

Manuel Peña Fernández Electronics Engineer

IP to detect and diagnose errors in COTS microprocessors through the Trace Interface

2nd European Workshop on On-Board Data Processing (OBDP 2021)

16th June 2021

About our company: ARQUIMEA

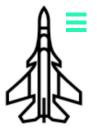
We believe in technology as a driver for social development and progress.

Our continuous activity in R&D&i allows us to create solutions and innovative products based on our technologies for highly demanding sectors

where we operate.

ARQUIMEA is a cross-sectoral international technology company

Turnover
71 M€
Professionals
380+
Operations
25+ Countries


About our company: ARQUIMEA AEROSPACE & DEFENCE



DEFENCE & SECURITY

AERONAUTICS

SCIENCE

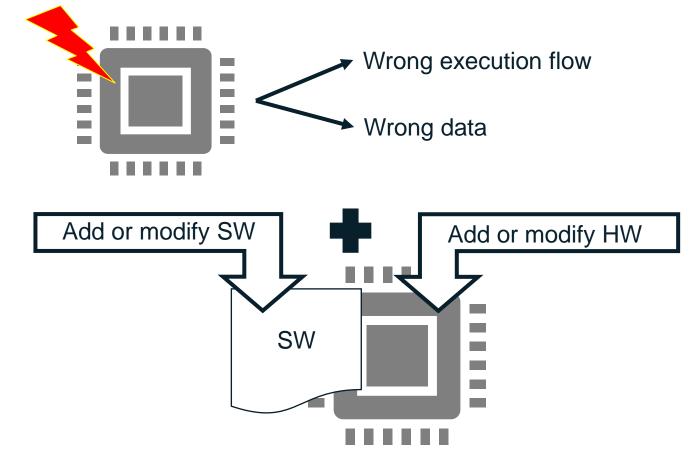
OUTLINE

- **1** Motivation
- Trace-based error detection and diagnosis
- 3 Applications
- 4 Conclusions

Motivation

"Enhance observability of hard COTS processors to provide error detection and diagnosis capabilities"

Microprocessor errors and hardening techniques


Types of errors in microprocessors

- Control-flow errors
- Data errors

Microprocessor hardening techniques

- Software
 - Data replication, signatures, assertions
- Hardware
 - TMR, watchdogs, lockstep
- Hybrid

Hardware cannot be modified in COTS!

Microprocessor error diagnosis

Radiation testing quantifies device susceptibility but commonly disregards error causes

- Error diagnosis may:
 - Identify circuit vulnerabilities
 - Assess on error criticality
 - Improve mitigation techniques
 - Support risk management

Importance of quality and completeness of diagnosis information

Collected immediately after the error

- Existing error diagnosis approaches:

 - Fault injection to create error dictionaries ______ Error aliasing

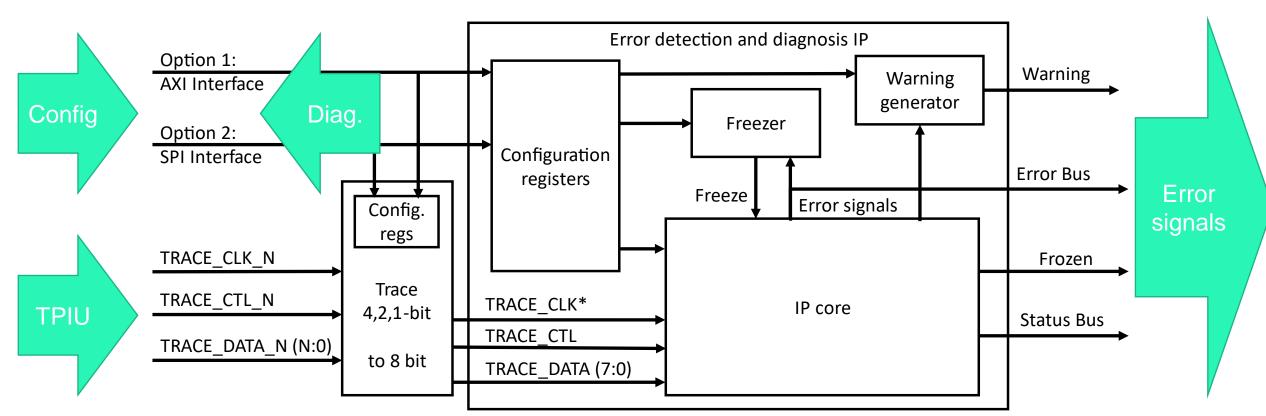
The trace interface

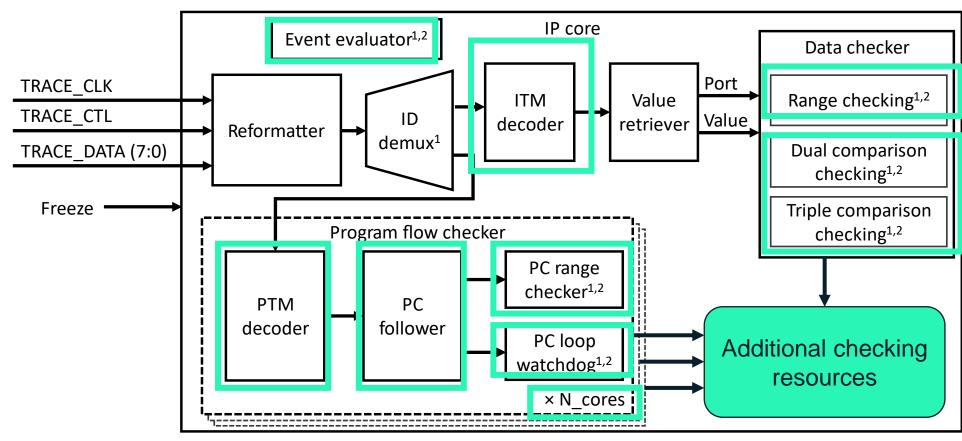
- Software debugging tool commonly available at modern microprocessors
- Non-intrusive, low latency information
- Unused in deployed applications
- Deals with asynchronous events
- Useful for error detection and diagnosis
- Not natively supported

ARM & CoreSight

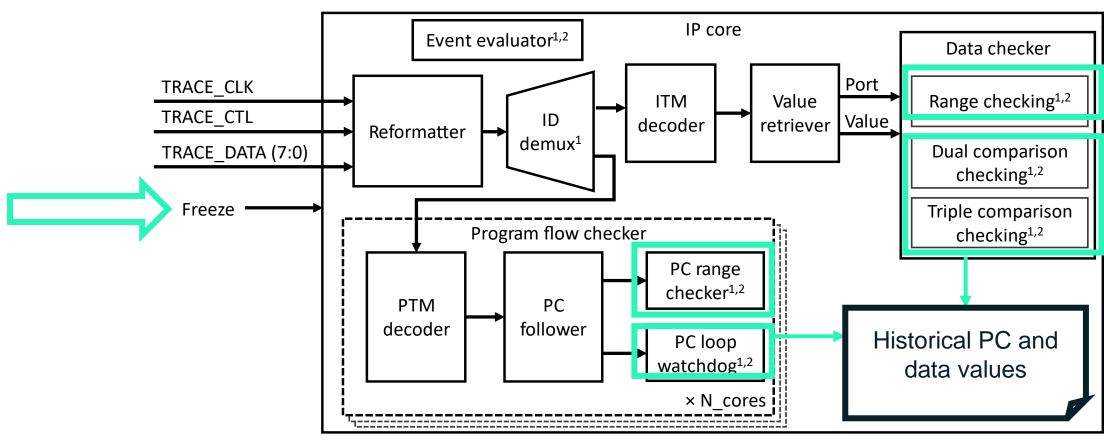
- High penetration in commercial electronics
- New ARM-based space-oriented initiatives (NASA HPSC or NanoXplore)
 - Scalable
 - Flexible
 - Low power and high performance
- CoreSight technology is the family of ARM components to support trace and debug
- CoreSight trace is compatible with almost any ARM processor cores
- Availability of specific components is implementation dependent
 - Common functionalities
 - Common interfaces

Trace-based error detection and diagnosis




IP interfaces

*Freq(TRACE_CLK_N) = Freq(TRACE_CLK_N) × N / 8


IP architecture

- 1. Configurable
- 2. Generates error signals

Historical data

- 1. Configurable
- 2. Generates error signals

IP specifications

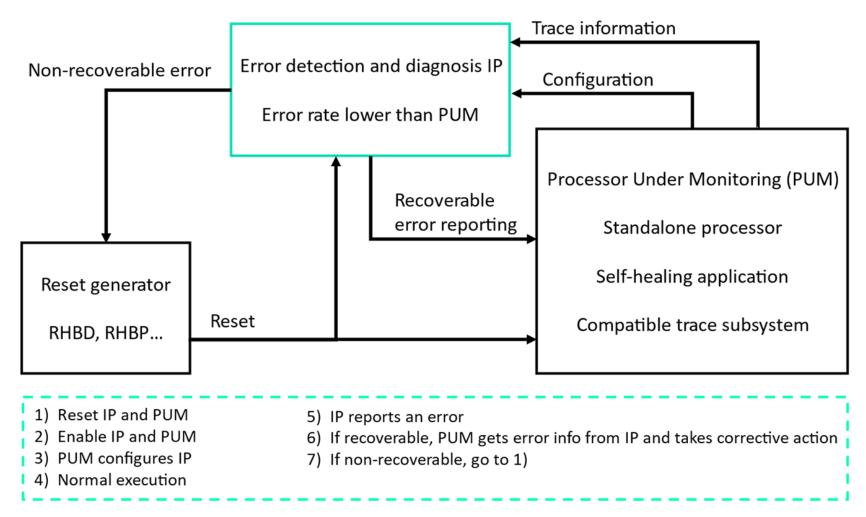
•	Condition	Min	Тур	Max	Units	Comment
Pin count	SPI interface option No error signals	6	10			Each error signal adds extra pins
Error detection latency	No nested events in event evaluator			23	TRACE_CLK clock cycles	Event evaluator adds one cycle per each nested event
	@1333Mbps	140			ns	
Operating frequency	Implemented on Xilinx XC7Z010			166	MHz	TRACE_CLK frequency
LUT count	Synthesis for Xilinx Artix 7 series	2500	6000			6-input LUTs
Flip Flop count	Synthesis for Xilinx Artix 7 series	2700	7000			D-type FFs
Trace Data throughput	On-chip XC7Z010 over EMIO 8-bit data width			1333	Mbps	
	Off-chip XC7Z010 over MIO 4-bit data width LVCMOS33			920	Mbps	
	Off-chip XC7Z010 over EMIO 4-bit data width TDMS33			1200	Mbps	

Applications

- Device evaluation
- System design
- System operation

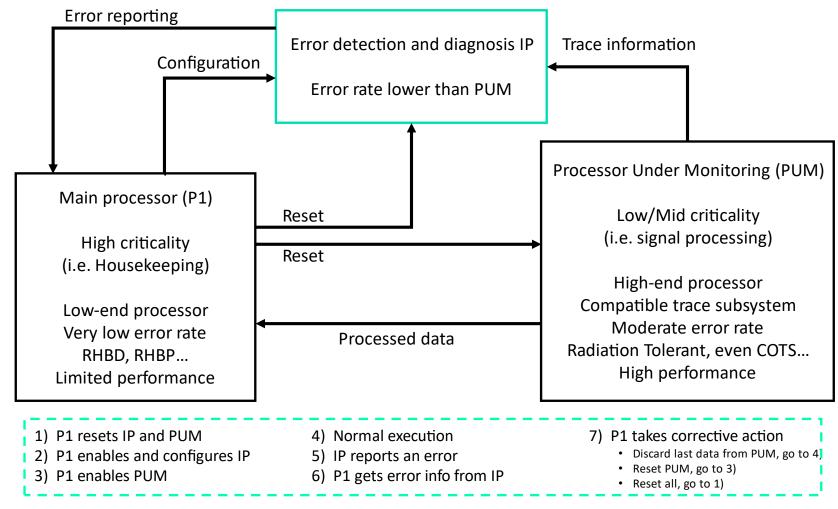
Device evaluation & system design

Successfully detecting and classifying errors in ARM Cortex-A9 on Xilinx Zyng-7000 device.


IP supports following tasks:

- Online error detection of control-flow and data errors in different applications with up to 99.9% coverage
- Integration with other system-level hardening techniques such as lockstep or hardware acceleration
- Identification of most radiation sensitive resources in the processing system
- Selection of the lowest cross section version of a given application
- **Evaluation of error criticality through effective error diagnosis**

Flexible integration options



Binary integration

Ternary integration

IP highlights

- Online, low latency, error detection and diagnosis
- 140ns detection latency
- Comprehensive error traceability and diagnosis
- Seamless integration as a system peripheral
- Scalable, flexible, parametric design
- User configurable

- Already tested under neutron and proton irradiation with up to 99.9% error coverage
- Selected for contract by ESA through the Open Space Innovation Platform

Conclusions

- New solutions for reliably using COTS processors in space are of big interest in space industry
- Trace monitoring brings new possibilities to the designer's toolbox
- Trace-based error detection and diagnosis is available at Arquimea as an IP core
- Further IP developments are ongoing with ESA support

EARQUIMEA

IP to detect and diagnose errors in COTS microprocessors through the Trace Interface

2nd European Workshop on On-Board Data Processing (OBDP 2021)

Manuel Peña Fernández Electronics Engineer

mpena@arquimea.com

16th June 2021

arquimea.com

Parque Científico Leganés Tecnológico Margarita salas, 10, 28918, Leganés (Madrid), Spain