

EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESING (OBDP2021), 14-17 JUNE 2021

RAMON SPACE RC64-BASED AI/ML INFERENCE ENGINE

Ran Ginosar, David Goldfeld, Peleg Aviely, Roei Golan, Avraham Meir,

Fredy Lange, Dov Alon, Tuvia Liran, Avi Shabtai

Ramon.Space, Yoqneam Illit 2069201, Israel

ABSTRACT

RC64 addresses the challenges facing execution of

Machine Learning inference in Space: Long

maintenance-free lifetime, high radiation, wide

temperature span and numerous thermal cycles.

Commercial, industrial and automotive AI accelerators

cannot perform in the harsh environment of Space. A

ML framework is implemented for on-board inference

using RC64. Ground-based development converts

standard ML models, and parallelizes the computations

while considering the specific dimensions, sizes and

operations of each layer. The parallelized model is

transformed into an interpretable RC64 model, based on

RC64 task-based programming model. The resulting

RC64 ML model is beamed up to the on-board RC64-

based Inference Engine, where it is interpreted. This

approach offers high performance, power efficiency,

and cyber security. RC64 architecture, capabilities and

programming models, as well as RC64-based storage,

are described.

1. INTRODUCTION

The fast proliferation of Artificial Intelligence (AI) and

in particular Machine Learning (ML) applications, as

well as their insatiable demand for high performance

computing and for handling Big Data, brought about a

wave of innovation, leading to numerous hardware

accelerators and special purpose architectures for data

center and for edge computing alike [4][5][6][7][4].

The Space domain is destined to take strong advantage

of that trend. Many on-board Space applications of ML

have emerged, as follows. In the area of EO & Remote

Sensing, cloud detection, object identification,

recognition, and change detection have been proposed;

Spectrum analysis, anomaly and interference detection,

interference mitigation, source location and modulation

classifiers are being developed for telecommunications;

Robotics and vision based navigation, docking and

landing are applied to exploration, mission extension

and debris management; Managing spectra, networks

and users are proposed for communications; and ML-

based cybersecurity is applicable to all Space uses.

Key challenges faced by on-board Space systems for the

storage and high performance processing of ML

applications are mostly due to the harsh conditions of

Space. On-board processing should survive the duration

of the mission, extending many years in high-end cases.

Computing hardware and Big Data storage should

withstand the heavy radiation and be resilient to the

various radiation effects. Systems are exposed to very

wide temperature ranges and undergo a very large

number of thermal cycles. All these challenges may

pose significant risks when depending on available

AI/ML accelerators that have not been designed for use

in Space.

RC64 manycore processor addresses both DSP and

AI/ML computations. Not only can it operate in Space

(practically) forever, it also demonstrates high

performance and high power efficiency when executing

both DSP and AI/ML applications.

This paper describes using RC64 on-board for

inference. Training is to be carried out on the ground,

followed by adapting the model for execution in Space.

The Inference Engine (IE) interpreter, including a rich

library of kernels for all sorts of ML layers, is installed

on-board RC64. Once the adapted model is “beamed

up” to the spacecraft, it is interpreted by IE. The model

is never compiled into any code, in order to maintain

security and cyber-protection of the on-board computer.

Data for ML is either stored on-board or provided by

sensors and receivers. Results are either stored on-board

or transmitted elsewhere.

The paper briefly introduces RC64 in Sect. 2, presents

the concept of on-board ML inference in Sect. 3, and

explains the flow for model development in Sect. 4. The

Inference Engine (IE) is discussed in Sect. 5 and is

evaluated in Sect. 6.

2. RC64 AND ITS PROGRAMMING MODEL

The RC64 many-core has been presented in full in [1].

As shown in Figure 1, 64 DSP cores are all

interconnected in parallel to a many-bank shared

memory, as well as to a central hardware scheduler.

Each core is equipped with local instruction and data

caches, a local scratchpad memory, four fixed-point

multiplier-accumulators organized as a SIMD unit, one

floating-point fused-multiply-add unit, and a VLIW

controller. The cores employ soft-error-protected flip-

flops, error detecting memories, and multiple error and

fault monitors enabling uninterrupted operation in

Space. The shared memory is similarly protected against

SEU and SET. The entire RC64 is continuously

monitored and managed by its Fault Detection, Isolation

and Recovery (FDIR) unit, which also interacts with

off-chip FDIR controllers.

Figure 1. RC64 Many-Core Architecture. 64 DSP cores,

modem accelerators and multiple DMA controllers of

I/O interfaces access the multibank shared memory

through a logarithmic network. The hardware scheduler

dispatches fine grain tasks to cores, accelerators and

I/O.

RC64 cores exchange data only with the shared

memory, by means of Read and Write instructions,

enabled by cache line fetch and write-through

operations. RC64 cores do NOT exchange messages

among themselves. Shared memory consistency is

guaranteed by the programming model and by its

implementation in the hardware scheduler.

Programs are organized as task-dependency-graphs and

sequential task codes. The hardware scheduler,

following the task graph, determines when a task is

eligible for execution (all its predecessors in the graph

have completed), and dispatches the task to an available

core. The task executes in full, until completion, and

then the core notifies the scheduler.

Tasks do not receive data arguments. Rather, they are

programmed to find all their needs in shared memory.

Before completing execution of a task, the core writes

all results onto shared memory. No state is kept at the

core past completion of a task.

Some tasks implement data parallelism by duplicating

many instances. Each instance receives its unique ID as

an argument, and uses that ID in order to assure that no

two instances write into the same variable in shared

memory.

This task-oriented programming model assures

“Concurrent Read, Exclusive Write” (CREW) integrity

and consistency, alleviating the need for (inefficient)

MUTEX locks. The EW rule states that if one task

writes into some variable, no other task that is

concurrent to it is allowed to access that variable (for

either read or write). The CR rules states that concurrent

tasks may read from a shared variable but none of them

is allowed to write into that variable.

An in-depth example of DSP application (DVB-S2)

programming on RC64 can be found in [2]. Another

notable application employs the radiation-hard RC64 as

a storage controller, managing advanced highly-resilient

storage that can be implemented using non-Space

advanced flash storage devices. Figure 2 shows a first

version of such a storage, achieving End-of-Life

capacity of 1 TeraByte on a 10×10cm board.

Figure 2. 1 TB storage for Space. RC64 serves as the

storage controller. Several 3D NAND flash devices

make the highly protected, high endurance storage

3. MACHINE LEARNING INFERENCE ON

RC64

ML models typically specify neural layers. Each layers

receives tensor-organized inputs and many parameters

(coefficients, or weights) organized in complex

structure. The layer typically applies linear operations

(input tensors multiplied by weight matrices) followed

by non-linear operators such as pooling, min/max

selection and an activation such as RELU. The inputs of

most layers are the outputs generated by some previous

layers, and the output of the last layer typically

constitutes the result.

Prior to using a model on RC64, the model is

transformed into a format compatible with RC64

programming model, as described in Sect. 2. The

Inference Engine (IE) interpreter is pre-designed as a

loop of generic layer code. IE interprets the model one

layer at a time, in the order specified by the model. The

loop body invokes a kernel library according to the type

of that layer. The kernel is obviously arranged as a

parallel (“duplicable”) task, so that RC64 parallelism

can be utilized for the layer.

Many AI/ML applications need to handle “Big Data”

and very large models (comprising millions of weights).

The execution bottleneck shifts in such (typical) cases

from the cores to fetching data and weights from off-

chip memory (DRAM) and storage, as well as to

receiving massive streams through high speed data

links. The pre-programmed IE initiates pre-fetching of

the data and weights for one layer while still computing

a previous layer, in order to hide the fetching latency as

much as possible.

Often, the data and weights required for a layer cannot

fit within the shared memory. In such (common) cases,

the layer is decomposed into sub-layers. While

executing one sub-layer, the IE pre-fetches data and

weights for the next sub-layer, to achieve latency

hiding.

Next, Sect. 4 describes the (on-ground) model

development, in preparation for beaming it up to Space,

and Sect. 5 further explains IE. Both sections also relate

to coordinating multiple RC64 processors for the same

AI/ML inference model.

4. MODEL DEVELOPMENT FLOW

Model transformation for on-board interpretation by IE

is carried out on the ground. A given model is first

parsed. If desired, all or some floating-point

computations are converted to fixed-point. Each layer is

parallelized according to model and data dimensions

and the required operations. A layer may have to be

further decomposed into multiple consecutive stages,

due to memory limitations. Parallelism may also extend

multiple RC64 processors. The entire development flow

is depicted in Figure 3.

Figure 3. The Inference Development Flow

4.1. Parsing

A ML model specified in a standard framework such as

KERAS is parsed into a Model Intermediate Format and

a Parameter Intermediate Format (a self-describing data

set of weights). Figure 4 and Figure 5 show an input

sample and an example of the intermediate format.

Figure 4. Sample input ML model

Figure 5. Model Intermediate Format (first two lines of

the model of Figure 4).

Next, the given layers are examined. At times, splitting

a layer in two may enhance performance or power

efficiency. Similarly, when applying one library kernel

to two consecutive model layers turns out to be more

efficient than interpreting each layer separately, the two

layers are combined. The two cases are exemplified in

Figure 6, together with the resulting Model Task

Format.

Figure 6. A given 4-layer model is re-arranged by

splitting Layer 1 and merging Layers 3,4. The serial

code defines order of interpretation by IE.

4.2. Parallelization

In principle, every line of the serial code in Figure 6

can be mapped to a corresponding parallel (duplicable)

task, as can be seen in Figure 7.

Figure 7. The serial model of Figure 6 can be mapped

onto a corresponding list of parallel (duplicable) tasks.

Parallelizing layers in convolutional neural networks,

where a tensor of inputs is multiplied by weight

matrices, can be performed along the ideas shown in

Figure 8. The input tensor may be parallelized along

each one of its dimensions, and Figure 8 shows two

two-way splits and one three-way parallelism. Similarly,

output parallelization is possible by applying different

convolution kernels in parallel.

Figure 8. Input and output parallelism in a ML layer

Since conceptually all layers are similar to each other, a

looping structure is formed as in Figure 9 rather than the

format of Figure 7. The code loops over layers. In

parallel with layer execution, outputs of the previous

layer may be written off-chip to either DRAM or

storage, and inputs and weights for the next layer are

pre-fetched form either DRAM or storage, in order to

hide latency.

Figure 9. Generic task parallel code

4.3. Layer Optimization

The generic task parallel code of Figure 9 often runs

into the problem that the inputs and weights for a single

layer exceed the capacity of the on-chip shared memory.

In such cases, further optimization is applied. The layer

is further decomposed into sub-layers, according to the

various means of parallelization discussed in Figure 8.

An inner loop is devised, as shown in Figure 10. While

a sub-layer that is wholly contained in the on-chip

shared memory is being executed, the outputs of the

previous sub-layer are written out to either DRAM or

storage, and the inputs and weights required for the next

sub-layers are pre-fetched. Clearly, sufficient buffer

space should be reserved in the on-chip shared memory.

Figure 10. Fragmented generic task parallel code

4.4. Multi-RC64 Distribution

ML layer computations are readily parallelizable, since

the computation of any one activation (output) is

independent of the computations of all other activations

of the layer. That observation has enabled the

parallelization of ML computations as discussed above.

Decomposing a layer computation over multiple RC64

processors is achievable in a similar manner. A higher

level control task manages the synchronization of tasks

performed in different processor in the same way as the

hardware scheduler does within one RC64 processor.

Other alternative parallelizations are also considered:

Applying same model to different input sets on different

processors, pipelining computations over multiple

processors, and more.

5. RC64 INFERENCE ENGINE

The outcome of the development process defines each

layer in full using the Model Tasked Format (Figure

12). It is accompanied by the weight data set, using the

Parameter Tasked Format. The IE interpreter executes

the code shown in Figure 10. For each layer, that code

reads the model, invokes the appropriate library kernels,

and reads in the input data and weights from the

addresses that are also specified by the Model Tasked

Format (pointing at either storage, or DRAM, or on-chip

shared memory). The outputs are stored at the addresses

that are also specified in the model.

If the model is distributed over multiple RC64

processors, synchronization tasks coordinate the work.

6. RC64 INFERENCE ENGINE

PERFORMANCE EVALUATION

IE on RC64 has been evaluated using the Keras version

of VGG [8][9], opting for the VGG-19 model and

datasets of 224×224 pixel images. VGG is a very large

model, and when processing very large data sets it is

indicative of expected on-board Space ML applications,

listed in Sect. 1. High performance, low power results

are demonstrated, and performance as well as power

efficiency are compared with a Nvidia GPU testing the

same benchmark.

6.1. VGG Benchmark

VGG, originally presented in [8], employs a very large

model, as can be deduced from Figure 11 [4]. About

150 million weights are needed, but the model itself is

relatively simple and is based on only a few types of

layers.

Figure 11. VGG-19 benchmark shown with many other

model benchmarks. It contains 150M weights and

requires 20 GOP per image frame.

When executing the VGG model (retrieved from [9]),

RC64 needs to balance computing with massive data

fetches. Inputs to the first layer are received at high

speed over multiple SpaceFibre links. Inputs to other

layers, as well as weights, are fetched from off-chip

DRAM, and activations generated by the layers are

written to the same DRAM.

Large models that may be useful for on-board Space

ML applications are expected to also incur heavy I/O

cost in parallel with high computing demands, similarly

to VGG. Hence, VGG became the benchmark of choice

for IE on RC64 processors.

Figure 12. Model Tasked Format

6.2. VGG Performance

Figure 13 shows a snapshot of RC64 execution profiler

when executing VGG-19 inference. The horizontal axis

represents time, and the vertical axis indicates the

number of active RC64 cores (out of a total 64 cores) at

any point in time. As can be seen in the figure, all 64

cores are active (blue color) most of the time. As shown

below, the benchmark manages to utilize about 80% of

peak MAC performance.

Figure 13. Execution profile of VGG-19 benchmark on

RC64. Most of the time, all 64 cores are active.

Figure 14 presents a snapshot of the oscilloscope that

measures instantaneous current consumption of the

computing parts of RC64 (excluding SpaceFibre and

DRAM interfaces). That current, consumed at 1.0V, is

indicative of power consumption during the VGG

benchmark inference execution. The different layers are

readily distinguishable. The narrow vertical drops

between layers indicate short pauses in processing,

while tasks are being swapped. Power does not exceed

the peak 4 Watt mark which is reachable only during

maximum core utilizations. Total power, including I/O,

is typically closer to 5 Watts (when all cores and all

MACs are fully utilized and all I/O interfaces are

active).

Figure 14. Power profile of RC64 while executing

VGG-19 benchmark. Layers are clearly identifiable.

Total power never exceeds 4 Watt.

Table 1 lists performance parameters. The first column

shows RC64 results. Based on 65nm technology, RC64

consumes no more than 5W and processes 2.8 frames

per second (FPS). As implied by Figure 11, each frame

processed by VGG-19 inference requires 20 Giga

Operations (20 GOP), hence 2.8 FPS implies 56 GOP/s.

This execution rate is 80% of RC64 peak performance

of 70 GOP/s. The bottom line indicates 0.56 FPS-per-

Watt (FPS/W). Note that attempting to estimate ML

inference performance by considering only peak

performance may be misleading. A full VGG

benchmark is more reliable for assessing ML

performance.

The second column of the table speculates performance

and power that may be achievable on Ramon Space’s

future roadmap product, RC256. If implemented on

16nm, the same 5W should lead to a conservative

estimate of at least 25 FPS, or 5.0 FPS/W.

The last column is based on published results of

benchmarking Nvidia Jetson Nano “low power, edge

computing” GPU [3]. That GPU is also implemented

using 16nm, making the comparison valid. Only 1.0

FPS/W is reported by Nvidia. Our conclusion is that

RC64 architecture is more suitable for ML inference

than that of the GPU. Moreover, the GPU is unsuitable

for challenging missions in Space.

Table 1. VGG-19 benchmark performance of RC64, of a

future roadmap scaling, and of Nvidia Jetson-Nano. The

benchmark processes 224×224 image frames.

 Ramon Space
RC64

Ramon Space

RC256

(roadmap)

Nvidia Jetson

Nano

(non-Space)

Space Ready Yes Yes NO

Process 65nm 16nm 16nm

Power 5 W 5 W 10 W

Frames Per

Second
2.8 FPS 25 FPS 10 FPS

Perf/Power
ratio

0.56 FPS/W 5.0 FPS/W 1.0 FPS/W

7. CONCLUSIONS

RC64 addresses all challenges facing execution of

Machine Learning inference in Space: Long

maintenance-free lifetime, high radiation, wide

temperature span and numerous thermal cycles. A ML

framework is implemented for on-board ML inference

using RC64. Ground-based development converts

standard ML models, and parallelizes the computations

while considering the specific dimensions, sizes and

operations of each layer. The parallelized model is

transformed into an interpretable RC64 model, based on

RC64 task-based programming model. The resulting

RC64 ML model is beamed up to the on-board RC64-

based Inference Engine, where it is interpreted. This

approach offers high performance, power efficiency,

and cyber security. Using VGG-19 benchmark and

224×224 pixel image frames, a 2.8 frames-per-second

rate is achieved while consuming 5 Watts, implying

0.56 frames-per-second-per-Watt while working

(practically forever) in the harsh conditions of Space.

ACKNOWLEDGEMENTS

The authors are grateful to the Israel Space Agency and

the Government of Israel for their strong support of this

activity.

REFERENCES

[1] Ginosar, R., P. Aviely, T. Israeli, and H.

Meirov. RC64: High performance rad-hard

manycore. In IEEE Aerospace Conference,

2016.

[2] Aviely, P., O. Radovsky and R. Ginosar. DVB-

S2 software defined radio modem on the RC64

manycore DSP. In IEEE Aerospace

Conference, 2016.

[3] Nvidia, Jetson Nano Deep Learning Inference

Benchmarks,

https://developer.nvidia.com/embedded/jetson-

nano-dl-inference-benchmarks, undated.

[4] Bianco, S., R. Cadene, L. Celona, and P.

Napoletano. Benchmark analysis of

representative deep neural network

architectures. IEEE Access 6 (2018): 64270-

64277

[5] Dai, W., & Berleant, D. (2019, December).

Benchmarking contemporary deep learning

hardware and frameworks: A survey of

qualitative metrics. In 2019 IEEE First

International Conference on Cognitive

Machine Intelligence (CogMI) (pp. 148-155).

IEEE.

[6] A. Reuther, P. Michaleas, M. Jones, V.

Gadepally, S. Samsi and J. Kepner, "Survey

and Benchmarking of Machine Learning

Accelerators," 2019 IEEE High Performance

Extreme Computing Conference (HPEC),

2019.

[7] Fuketa, H., & Uchiyama, K. (2021). Edge

artificial intelligence chips for the

cyberphysical systems era. Computer, 54(1),

84-88.

[8] Simonyan, K., & Zisserman, A. (2014). Very

deep convolutional networks for large-scale

image recognition. arXiv preprint

arXiv:1409.1556.

[9] Keras on-line model for VGG,

https://keras.io/api/applications/vgg/

https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
https://keras.io/api/applications/vgg/

