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ABSTRACT 

RC64 addresses the challenges facing execution of 

Machine Learning inference in Space: Long 

maintenance-free lifetime, high radiation, wide 

temperature span and numerous thermal cycles. 

Commercial, industrial and automotive AI accelerators 

cannot perform in the harsh environment of Space. A 

ML framework is implemented for on-board inference 

using RC64. Ground-based development converts 

standard ML models, and parallelizes the computations 

while considering the specific dimensions, sizes and 

operations of each layer. The parallelized model is 

transformed into an interpretable RC64 model, based on 

RC64 task-based programming model. The resulting 

RC64 ML model is beamed up to the on-board RC64-

based Inference Engine, where it is interpreted. This 

approach offers high performance, power efficiency, 

and cyber security. RC64 architecture, capabilities and 

programming models, as well as RC64-based storage, 

are described. 

 

1. INTRODUCTION 

The fast proliferation of Artificial Intelligence (AI) and 

in particular Machine Learning (ML) applications, as 

well as their insatiable demand for high performance 

computing and for handling Big Data,  brought about a 

wave of innovation, leading to numerous hardware 

accelerators and special purpose architectures for data 

center and for edge computing alike [4][5][6][7][4]. 

The Space domain is destined to take strong advantage 

of that trend. Many on-board Space applications of ML 

have emerged, as follows. In the area of EO & Remote 

Sensing, cloud detection, object identification, 

recognition, and change detection have been proposed; 

Spectrum analysis, anomaly and interference detection, 

interference mitigation, source location and modulation 

classifiers are being developed for telecommunications; 

Robotics and vision based navigation, docking and 

landing are applied to exploration, mission extension 

and debris management; Managing spectra, networks 

and users are proposed for communications; and ML-

based cybersecurity is applicable to all Space uses. 

Key challenges faced by on-board Space systems for the 

storage and high performance processing of ML 

applications are mostly due to the harsh conditions of 

Space. On-board processing should survive the duration 

of the mission, extending many years in high-end cases. 

Computing hardware and Big Data storage should 

withstand the heavy radiation and be resilient to the 

various radiation effects. Systems are exposed to very 

wide temperature ranges and undergo a very large 

number of thermal cycles. All these challenges may 

pose significant risks when depending on available 

AI/ML accelerators that have not been designed for use 

in Space. 

RC64 manycore processor addresses both DSP and 

AI/ML computations. Not only can it operate in Space 

(practically) forever, it also demonstrates high 

performance and high power efficiency when executing 

both DSP and AI/ML applications.  

This paper describes using RC64 on-board for 

inference. Training is to be carried out on the ground, 

followed by adapting the model for execution in Space. 

The Inference Engine (IE) interpreter, including a rich 

library of kernels for all sorts of ML layers, is installed 

on-board RC64. Once the adapted model is “beamed 

up” to the spacecraft, it is interpreted by IE. The model 

is never compiled into any code, in order to maintain 

security and cyber-protection of the on-board computer. 

Data for ML is either stored on-board or provided by 

sensors and receivers. Results are either stored on-board 

or transmitted elsewhere. 

The paper briefly introduces RC64 in Sect. 2, presents 

the concept of on-board ML inference in Sect. 3, and 

explains the flow for model development in Sect. 4. The 

Inference Engine (IE) is discussed in Sect. 5 and is 

evaluated in Sect. 6. 

2. RC64 AND ITS PROGRAMMING MODEL 

The RC64 many-core has been presented in full in [1]. 

As shown in Figure 1, 64 DSP cores are all 

interconnected in parallel to a many-bank shared 

memory, as well as to a central hardware scheduler. 

Each core is equipped with local instruction and data 

caches, a local scratchpad memory, four fixed-point 

multiplier-accumulators organized as a SIMD unit, one 

floating-point fused-multiply-add unit, and a VLIW 

controller. The cores employ soft-error-protected flip-

flops, error detecting memories, and multiple error and 

fault monitors enabling uninterrupted operation in 

Space. The shared memory is similarly protected against 

SEU and SET. The entire RC64 is continuously 



 

monitored and managed by its Fault Detection, Isolation 

and Recovery (FDIR) unit, which also interacts with 

off-chip FDIR controllers. 

 

Figure 1. RC64 Many-Core Architecture. 64 DSP cores, 

modem accelerators and multiple DMA controllers of 

I/O interfaces access the multibank shared memory 

through a logarithmic network. The hardware scheduler 

dispatches fine grain tasks to cores, accelerators and 

I/O. 

RC64 cores exchange data only with the shared 

memory, by means of Read and Write instructions, 

enabled by cache line fetch and write-through 

operations. RC64 cores do NOT exchange messages 

among themselves. Shared memory consistency is 

guaranteed by the programming model and by its 

implementation in the hardware scheduler. 

Programs are organized as task-dependency-graphs and 

sequential task codes. The hardware scheduler, 

following the task graph, determines when a task is 

eligible for execution (all its predecessors in the graph 

have completed), and dispatches the task to an available 

core. The task executes in full, until completion, and 

then the core notifies the scheduler.  

Tasks do not receive data arguments. Rather, they are 

programmed to find all their needs in shared memory. 

Before completing execution of a task, the core writes 

all results onto shared memory. No state is kept at the 

core past completion of a task. 

Some tasks implement data parallelism by duplicating 

many instances. Each instance receives its unique ID as 

an argument, and uses that ID in order to assure that no 

two instances write into the same variable in shared 

memory. 

This task-oriented programming model assures 

“Concurrent Read, Exclusive Write” (CREW) integrity 

and consistency, alleviating the need for (inefficient) 

MUTEX locks. The EW rule states that if one task 

writes into some variable, no other task that is 

concurrent to it is allowed to access that variable (for 

either read or write). The CR rules states that concurrent 

tasks may read from a shared variable but none of them 

is allowed to write into that variable. 

An in-depth example of DSP application (DVB-S2) 

programming on RC64 can be found in [2]. Another 

notable application employs the radiation-hard RC64 as 

a storage controller, managing advanced highly-resilient 

storage that can be implemented using non-Space 

advanced flash storage devices. Figure 2 shows a first 

version of such a storage, achieving End-of-Life 

capacity of 1 TeraByte on a 10×10cm board. 

 

Figure 2. 1 TB storage for Space. RC64 serves as the 

storage controller. Several 3D NAND flash devices 

make the highly protected, high endurance storage 

3. MACHINE LEARNING INFERENCE ON 

RC64 

ML models typically specify neural layers. Each layers 

receives tensor-organized inputs and many parameters 

(coefficients, or weights) organized in complex 

structure. The layer typically applies linear operations 

(input tensors multiplied by weight matrices) followed 

by non-linear operators such as pooling, min/max 

selection and an activation such as RELU. The inputs of 

most layers are the outputs generated by some previous 

layers, and the output of the last layer typically 

constitutes the result. 

Prior to using a model on RC64, the model is 

transformed into a format compatible with RC64 

programming model, as described in Sect. 2. The 



 

Inference Engine (IE) interpreter is pre-designed as a 

loop of generic layer code. IE interprets the model one 

layer at a time, in the order specified by the model. The 

loop body invokes a kernel library according to the type 

of that layer. The kernel is obviously arranged as a 

parallel (“duplicable”) task, so that RC64 parallelism 

can be utilized for the layer. 

Many AI/ML applications need to handle “Big Data” 

and very large models (comprising millions of weights). 

The execution bottleneck shifts in such (typical) cases 

from the cores to fetching data and weights from off-

chip memory (DRAM) and storage, as well as to 

receiving massive streams through high speed data 

links. The pre-programmed IE initiates pre-fetching of 

the data and weights for one layer while still computing 

a previous layer, in order to hide the fetching latency as 

much as possible.  

Often, the data and weights required for a layer cannot 

fit within the shared memory. In such (common) cases, 

the layer is decomposed into sub-layers. While 

executing one sub-layer, the IE pre-fetches data and 

weights for the next sub-layer, to achieve latency 

hiding. 

Next, Sect. 4 describes the (on-ground) model 

development, in preparation for beaming it up to Space, 

and Sect. 5 further explains IE. Both sections also relate 

to coordinating multiple RC64 processors for the same 

AI/ML inference model. 

4. MODEL DEVELOPMENT FLOW 

Model transformation for on-board interpretation by IE 

is carried out on the ground. A given model is first 

parsed. If desired, all or some floating-point 

computations are converted to fixed-point. Each layer is 

parallelized according to model and data dimensions 

and the required operations. A layer may have to be 

further decomposed into multiple consecutive stages, 

due to memory limitations. Parallelism may also extend 

multiple RC64 processors. The entire development flow 

is depicted in Figure 3. 

 

Figure 3. The Inference Development Flow 

4.1. Parsing 

A ML model specified in a standard framework such as 

KERAS is parsed into a Model Intermediate Format and 

a Parameter Intermediate Format (a self-describing data 

set of weights). Figure 4 and Figure 5 show an input 

sample and an example of the intermediate format. 

 

Figure 4. Sample input ML model 

 

Figure 5. Model Intermediate Format (first two lines of 

the model of Figure 4). 

Next, the given layers are examined. At times, splitting 

a layer in two may enhance performance or power 

efficiency. Similarly, when applying one library kernel 

to two consecutive model layers turns out to be more 

efficient than interpreting each layer separately, the two 

layers are combined. The two cases are exemplified in 

Figure 6, together with the resulting Model Task 

Format.  



 

 

Figure 6. A given 4-layer model is re-arranged by 

splitting Layer 1 and merging Layers 3,4. The serial 

code defines order of interpretation by IE. 

 

4.2. Parallelization 

In principle, every line of the serial code in Figure 6 

can be mapped to a corresponding parallel (duplicable) 

task, as can be seen in Figure 7. 

 

Figure 7. The serial model of Figure 6 can be mapped 

onto a corresponding list of parallel (duplicable) tasks. 

Parallelizing layers in convolutional neural networks, 

where a tensor of inputs is multiplied by weight 

matrices, can be performed along the ideas shown in 

Figure 8. The input tensor may be parallelized along 

each one of its dimensions, and Figure 8 shows two 

two-way splits and one three-way parallelism. Similarly, 

output parallelization is possible by applying different 

convolution kernels in parallel. 

 

Figure 8. Input and output parallelism in a ML layer 

Since conceptually all layers are similar to each other, a 

looping structure is formed as in Figure 9 rather than the 

format of Figure 7. The code loops over layers. In 

parallel with layer execution, outputs of the previous 

layer may be written off-chip to either DRAM or 

storage, and inputs and weights for the next layer are 

pre-fetched form either DRAM or storage, in order to 

hide latency.  

 

Figure 9. Generic task parallel code 

 

4.3. Layer Optimization 

The generic task parallel code of Figure 9 often runs 

into the problem that the inputs and weights for a single 

layer exceed the capacity of the on-chip shared memory. 

In such cases, further optimization is applied. The layer 

is further decomposed into sub-layers, according to the 

various means of parallelization discussed in Figure 8. 

An inner loop is devised, as shown in Figure 10. While 

a sub-layer that is wholly contained in the on-chip 

shared memory is being executed, the outputs of the 

previous sub-layer are written out to either DRAM or 

storage, and the inputs and weights required for the next 

sub-layers are pre-fetched. Clearly, sufficient buffer 

space should be reserved in the on-chip shared memory. 



 

 

Figure 10. Fragmented generic task parallel code 

 

4.4. Multi-RC64 Distribution 

ML layer computations are readily parallelizable, since 

the computation of any one activation (output) is 

independent of the computations of all other activations 

of the layer. That observation has enabled the 

parallelization of ML computations as discussed above. 

Decomposing a layer computation over multiple RC64 

processors is achievable in a similar manner. A higher 

level control task manages the synchronization of tasks 

performed in different processor in the same way as the 

hardware scheduler does within one RC64 processor. 

Other alternative parallelizations are also considered: 

Applying same model to different input sets on different 

processors, pipelining computations over multiple 

processors, and more. 

5. RC64 INFERENCE ENGINE 

The outcome of the development process defines each 

layer in full using the Model Tasked Format (Figure 

12). It is accompanied by the weight data set, using the 

Parameter Tasked Format. The IE interpreter executes 

the code shown in Figure 10. For each layer, that code 

reads the model, invokes the appropriate library kernels, 

and reads in the input data and weights from the 

addresses that are also specified by the Model Tasked 

Format (pointing at either storage, or DRAM, or on-chip 

shared memory). The outputs are stored at the addresses 

that are also specified in the model. 

If the model is distributed over multiple RC64 

processors, synchronization tasks coordinate the work. 

6. RC64 INFERENCE ENGINE 

PERFORMANCE EVALUATION 

IE on RC64 has been evaluated using the Keras version 

of VGG [8][9], opting for the VGG-19 model and 

datasets of 224×224 pixel images. VGG is a very large 

model, and when processing very large data sets it is 

indicative of expected on-board Space ML applications, 

listed in Sect. 1. High performance, low power results 

are demonstrated, and performance as well as power 

efficiency are compared with a Nvidia GPU testing the 

same benchmark. 

6.1. VGG Benchmark 

VGG, originally presented in [8], employs a very large 

model, as can be deduced from Figure 11 [4]. About 

150 million weights are needed, but the model itself is 

relatively simple and is based on only a few types of 

layers. 

 

Figure 11. VGG-19 benchmark shown with many other 

model benchmarks. It contains 150M weights and 

requires 20 GOP per image frame. 

When executing the VGG model (retrieved from [9]), 

RC64 needs to balance computing with massive data 

fetches. Inputs to the first layer are received at high 

speed over multiple SpaceFibre links. Inputs to other 

layers, as well as weights, are fetched from off-chip 

DRAM, and activations generated by the layers are 

written to the same DRAM. 

Large models that may be useful for on-board Space 

ML applications are expected to also incur heavy I/O 

cost in parallel with high computing demands, similarly 

to VGG. Hence, VGG became the benchmark of choice 

for IE on RC64 processors. 

 

 



 

 

Figure 12. Model Tasked Format 

 

6.2. VGG Performance  

Figure 13 shows a snapshot of RC64 execution profiler 

when executing VGG-19 inference. The horizontal axis 

represents time, and the vertical axis indicates the 

number of active RC64 cores (out of a total 64 cores) at 

any point in time. As can be seen in the figure, all 64 

cores are active (blue color) most of the time. As shown 

below, the benchmark manages to utilize about 80% of 

peak MAC performance. 

 

Figure 13. Execution profile of VGG-19 benchmark on 

RC64. Most of the time, all 64 cores are active. 

Figure 14 presents a snapshot of the oscilloscope that 

measures instantaneous current consumption of the 

computing parts of RC64 (excluding SpaceFibre and 

DRAM interfaces). That current, consumed at 1.0V, is 

indicative of power consumption during the VGG 

benchmark inference execution. The different layers are 

readily distinguishable. The narrow vertical drops 

between layers indicate short pauses in processing, 

while tasks are being swapped. Power does not exceed 

the peak 4 Watt mark which is reachable only during 

maximum core utilizations. Total power, including I/O, 

is typically closer to 5 Watts (when all cores and all 

MACs are fully utilized and all I/O interfaces are 

active). 

 

Figure 14. Power profile of RC64 while executing 

VGG-19 benchmark. Layers are clearly identifiable. 

Total power never exceeds 4 Watt. 

Table 1 lists performance parameters. The first column 

shows RC64 results. Based on 65nm technology, RC64 

consumes no more than 5W and processes 2.8 frames 

per second (FPS). As implied by Figure 11, each frame 

processed by VGG-19 inference requires 20 Giga 

Operations (20 GOP), hence 2.8 FPS implies 56 GOP/s. 

This execution rate is 80% of RC64 peak performance 

of 70 GOP/s. The bottom line indicates 0.56 FPS-per-

Watt (FPS/W). Note that attempting to estimate ML 

inference performance by considering only peak 

performance may be misleading. A full VGG 

benchmark is more reliable for assessing ML 

performance. 



 

The second column of the table speculates performance 

and power that may be achievable on Ramon Space’s 

future roadmap product, RC256. If implemented on 

16nm, the same 5W should lead to a conservative 

estimate of at least 25 FPS, or 5.0 FPS/W.  

The last column is based on published results of 

benchmarking Nvidia Jetson Nano “low power, edge 

computing” GPU [3]. That GPU is also implemented 

using 16nm, making the comparison valid. Only 1.0 

FPS/W is reported by Nvidia. Our conclusion is that 

RC64 architecture is more suitable for ML inference 

than that of the GPU. Moreover, the GPU is unsuitable 

for challenging missions in Space. 

Table 1. VGG-19 benchmark performance of RC64, of a 

future roadmap scaling, and of Nvidia Jetson-Nano. The 

benchmark processes 224×224 image frames. 

 Ramon Space 
RC64 

Ramon Space 

RC256 

(roadmap) 

Nvidia Jetson 

Nano 

(non-Space) 

Space Ready Yes Yes NO 

Process 65nm  16nm 16nm 

Power  5 W 5 W 10 W 

Frames Per 

Second 
2.8 FPS 25 FPS 10 FPS 

Perf/Power 
ratio 

0.56 FPS/W 5.0 FPS/W 1.0 FPS/W 

 

7. CONCLUSIONS 

RC64 addresses all challenges facing execution of 

Machine Learning inference in Space: Long 

maintenance-free lifetime, high radiation, wide 

temperature span and numerous thermal cycles. A ML 

framework is implemented for on-board ML inference 

using RC64. Ground-based development converts 

standard ML models, and parallelizes the computations 

while considering the specific dimensions, sizes and 

operations of each layer. The parallelized model is 

transformed into an interpretable RC64 model, based on 

RC64 task-based programming model. The resulting 

RC64 ML model is beamed up to the on-board RC64-

based Inference Engine, where it is interpreted. This 

approach offers high performance, power efficiency, 

and cyber security. Using VGG-19 benchmark and 

224×224 pixel image frames, a 2.8 frames-per-second 

rate is achieved while consuming 5 Watts, implying 

0.56 frames-per-second-per-Watt while working 

(practically forever) in the harsh conditions of Space. 
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