

Ramon.Space is named in memory of Col. Ilan Ramon, Israeli astronaut who died on board the Columbia space shuttle, Feb. 1, 2003

Ramon Space RC64-based AI/ML Inference Engine

Session 6: AI Inference Frameworks and Acceleration on Space Devices Tuesday, Jun 15, 2021, 5:35 PM - 5:55 PM

Ran Ginosar David Goldfeld Peleg Aviely Roei Golan Avraham Meir Fredy Lange Dov Alon Tuvia Liran Avi Shabtai

1

AI/ML Accelerators are Plenty

All information contained within this infographic is gathered from the internet and periodically updated, no guarantee is given that the information provided is correct, complete, and up-to-date.

© 2021 Ramon.Space

AI/ML Accelerators are Great

- Training and/or Inference
- Many different architectures
- High level interfaces
- Power-efficient, or high-performance
- Inference / edge computing:
 - Low power
 - Small models
 - Small data

https://www.rle.mit.edu/eems/wp-content/uploads/2019/06/Tutorial-on-DNN-05-DNN-Accelerator-Architectures.pdf

AI/ML Accelerators are NOT FOR SPACE

- Space is
 - Long term: 10-30 years
 - High TID: 100–300 kRad
 - High Latchup: SEL_{TH} LET > 70 MeV·cm²/mg
 - Wide temperature span: -40°C to +100°C and higher
 - Many temperature cycles: 1,000,000 and more

Ramon Space RC64 is designed for high-end SPACE Machine Learning

Design Objectives: RC64 as a ML processor

- SPACE
- High performance-to-power ratio
 - Not simply high performance
 - Not simply low power
- Serves all/most ML models
 - Including not-yet-developed models (the field changes fast)
- Serves small & large models
- Serves small & big data
- No programming needed
- Compatible with ground ML
 - Develop/train/re-train on the ground
 - Repeatedly upload to SPACE

RC64

- Rad-Hard
- Built-in Fault Detection, Isolation & Recovery (FDIR)
- Many-core
 - 64 cores supporting DSP, ML & RISC
- 4 Mbyte shared memory
- Hardware Scheduler
- Fast I/O to DRAM
- Fast I/O to Storage
- Fast I/O Streaming

RC64

- Optimize performance-to-power ratio
- Low voltage & low frequency
 → low Joule/Operation (Watt/MIPS)
- \rightarrow RC64 is not the fastest
 - Use many RC64 chips to meet required performance

RC64 performing Machine Learning

- One layer at a time
 - Multiple RC64 chips can process multiple layers at same time, or multiple inputs
- Per layer:
 - Read inputs
 - Read weights
 - Perform work
 - Output activations

On the ground

Inference Development Flow

Model Parsing and Parameter Extraction

On the ground

Layer (type)	Output	Shape	Param #	0:
				name: conv32_1
conv32_1 (Conv1D)	(None,	128, 32)	192	type: Conv1D
	()]	<u> </u>		output_shape: (128, 32)
CONV32_2 (CONVID)	(None,	64, 32)	5152	activation: relu
conv32 3 (Conv1D)	(None,	32, 32)	5152	filters: 32
				input_shape: (256, 1)
conv64_1 (Conv1D)	(None,	16, 64)	10304	kernel_size: (5,)
conv64 2 (Conv1D)	(Nono	9 61)	20544	padding: same
CONV64_2 (CONVID)	(None,	0, 04)	20544	strides: (2,)
conv64 3 (Conv1D)	(None,	4, 64)	12352	use_bias: true
				1:
flatten_1 (Flatten)	(None,	256)	0	` name: conv32_2
de	(No	1001	20000	type: Conv1D
densel28 (Dense)	(None,	128)	32896	output_shape: (64, 32)
dense soft max (Dense)	(None,	4)	516	activation: relu
	,,	-,		filters: 32
activation_1 (Activation)	(None,	4)	0	input_shape: (128, 32)
				kernel_size: (5,)
Total params: 87,108				padding: same
Non-trainable params: 0				strides: (2,)
Non clarnasic paramo: 0				use bias: true

Ramon.Space

10

Ramon.Space

On the ground

On the ground

Model Tasked Format (MTF)

Field	Description			
Layer Type	0 - Conv1D, 1 - Conv2D, 2 - Dense, 3 - LocallyConnected1D,			
	4 – DepthwiseConv2D, 5 – Activation, 6 – AveragePooling1D, 7 – AveragePooling2D 8 – MaxPool1D, 9 – MaxPool2D			
Fragment input volume	An array containing the fragment input dimensions			
Layer input volume	An array containing the entire layer input dimensions			
Input location	The input volume location in memory			
Layer output volume	An array containing the layer output volume dimensions			
Output location	The output volume location in memory			
Kernel size	The convolution kernel dimensions (can be 4D)			
Kernel location	The convolution kernel location in memory (buffer and offset)			
Strides	Convolution stride (1D or 2D)			
Padding	If the fragment is on the volume border, pass the required padding (1D or 2D)			
Use bias	In case the fragment computes a point in an output feature of the layer (rather than an intermediate result), it's possible to add bias to the result			
Bias location	Bias vector location			
Apply activation	In case the fragment computes a point in an output feature of the layer (rather than intermediate result), it's possible to apply activation to the result			
Activation type	0 – ReLu, 1 – Sigmoid, 2 - linear			
Save output buffer	Output of current layer should be retained for future calculations (used in residual connections)			

On the ground

Ramon.Space

On the ground

1.2

2

34

© 2021 Ramon.Space

Task

On the ground

Parallelizing a Machine Learning Model

Input parallelism

On the ground

On the ground

Ramon.Space

18

On the ground

On the ground

Model Beam Up

• As often as needed: Hourly, daily, yearly

Inference Engine Beam Up

- Should happen infrequently
- For new kernels
- For optimization
- For bug patching

INFERENCE ENGINE

Core Activity Executing VGG Benchmark

Power Consumed Executing VGG Benchmark

- Note barriers between Layers
- Red bar around 4W
- Max power including I/O < 5W

~4W Mark

Why VGG?

- Very large
 - 150M parameters
 - Needs lots of external memory
 - Needs streaming of both input and weights
- Very simple
 - 3 Kernels: Dense, Conv2D (3x3), Max Pooling
 - Needs little implementation effort
- Small images
 - 32×32 to 224×224 images
 - Challenges efficiency
- VGG probably typical of very large 'future' models

[[]Bianco, Simone, Remi Cadene, Luigi Celona, and Paolo Napoletano. "Benchmark analysis of representative deep neural network architectures." IEEE Access 6 (2018): 64270-64277.]

Comparison: VGG Benchmark

VGG-19, 224×224 images

	Ramon Space	
	RC64	
Space Ready	Yes	
Process	65nm	
Power	5 W	
Frames Per Second	2.8 FPS	
Perf/Power ratio	0.56 FPS/W	

VGG-19 requires 20GOP per frame. 2.8FPS rate consumes 56GOP/sec, 80% of RC64 peak performance

Comparison: VGG Benchmark

VGG-19, 224×224 images

	Ramon Space	Ramon Space RC256	
	RC64	(roadmap)	
Space Ready	Yes	Yes	
Process	65nm	16nm	
Power	5 W	5 W	
Frames Per Second	2.8 FPS	25 FPS	
Perf/Power ratio	0.56 FPS/W	5.0 FPS/W	

VGG-19 requires 20GOP per frame. 2.8FPS rate consumes 56GOP/sec, 80% of RC64 peak performance 25FPS rate would consume 500GOP/sec on RC256

Comparison: VGG Benchmark

VGG-19, 224×224 images

	Ramon Space	Ramon Space RC256	Nvidia Jetson Nano
	RC64	(roadmap)	(non-Space)
Space Ready	Yes	Yes	NO
Process	65nm	16nm	16nm
Power	5 W	5 W	10 W
Frames Per Second	2.8 FPS	25 FPS	10 FPS
Perf/Power ratio	0.56 FPS/W	5.0 FPS/W	1.0 FPS/W

https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks

Bianco, Simone, Remi Cadene, Luigi Celona, and Paolo Napoletano, "Benchmark analysis of representative deep neural network architectures," IEEE Access 6 (2018): 64270-64277

Beyond VGG

- ML in Space for EO/Remote Sensing
 - Cloud detection
 - Object identification
 - Change detection
- ML in Space for Communications
 - Spectrum analysis
 - Anomaly & interference detection
 - Modulation classifier
- ML in Space for Robotics, Vision Based Navigation, Docking & Landing
- ML in Space for Spectrum, Network & User Management
- ML in Space for Cybersecurity
- ML in Space for …

ML Requires Storage

- RC64 also serves as long-life rad-hard controller for storage
- Smallest storage product is 1 TByte
 - 10×10cm card
 - High endurance
 - 5 years lifetime at LEO
- Larger storage product under development for GEO
 - 100 TByte to 1 PByte
 - 20-30 years lifetime
- High end computing, storage & networking to enable data-centers in Space

Summary

- Ramon Space enables high-end Machine Learning in Space
- Challenges
 - Space conditions and lifetime
 - Big Data & large models
 - Low power
- Solutions
 - Inference Engine, interpreter of standard models
 - Scalable computing
 - Scalable, durable storage

Ramon.Space

