

EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESING (OBDP2021), 14-17 JUNE 2021

USING THE VECTORBLOX™ ACCELERATOR SOFTWARE DEVELOPMENT KIT TO

CREATE PROGRAMMABLE AI/ML APPLICATIONS IN

RADIATION TOLERANT (RT) POLARFIRE® FPGAs

Aaron Severance (1), Diptesh Nandi (1), Ken O’Neill (1)

(1)
Microchip Technology Inc, 2355 W Chandler Blvd, Chandler AZ, 85224, USA

Aaron.Severance@Microchip.com
Diptesh.Nandi@Microchip.com

Ken.ONeill@Microchip.com

ABSTRACT

In this paper, we describe the VectorBlox Accelerator
software development kit (SDK) and how it is used to

optimize and convert trained Artificial Intelligence (AI)
models, targeting power-optimized 28 nm field
programmable gate arrays (FPGAs). Neura l networks

are sourced from a variety of supported input
frameworks, such as TensorFlow, Caffe, ONNX, a nd

PyTorch. The VectorBlox Accelerator SDK performs a
three-step conversion flow to optimize the networks,
calibrate and scale them to 8-bit representation, and

finally create an image for implementation on the
radiation tolerant (RT) PolarFire FPGA.

Power-efficient implementation of the neural network
on the FPGA is achieved by a soft IP core called

CoreVectorBlox. This soft IP core comprises a RISC-V
processor and firmware, a vector processor, and a
convolutional neural network accelerator, which

consists of a two-dimensional array of processing
elements, making use of the multiply-accumulate blocks
in the RT PolarFire FPGA.

By implementing neural networks in a matrix processor

programmed in the fabric of the radiation-toleran t RT
PolarFire FPGA, the networks can be iterated and
changed without resynthesizing the FPGA, result ing in

convenient, programmable low-power AI applications
that can be dynamically changed at runtime.

Examples of performance and utilization of a variety o f
neural networks sourced from TensorFlow, Caffe,

ONNX and PyTorch will be provided, for
implementations both with and without t rip le m odule
redundancy which may be desired for radiation

mitigation purposes.

The radiation-tolerant RT PolarFire FPGA will be

described, with emphasis on radiation test data and
schedules for qualification and flight models.

1. BACKGROUND – AI IN SPACE

The challenge faced by designers of space vehicle
payload instruments is one of increasing demand f or

information gathered on orbit. Sensor reso lut ions and
frame rates are increasing, and now satellite pa yload
instruments are generating data at hundreds of giga b its

per second. Downlink bandwidth is not increasing as
quickly, which means that sensor data must be

processed into useful information on orbit, in the
payload instruments. This creates demand for ever
larger, faster, and more feature-rich FPGAs. It also

gives rise to an emerging requirement for sophisticated
AI and machine learning (ML) capabilities to enable
efficient processing of payload data, a nd for

autonomous decision making on orbit.

2. AI/ML TRENDS AND RT POLARFIRE FPGA

TECHNOLOGY

Artificial Intelligence and Machine Learning (AI /ML)
are making their way into embedded devices to enable

smart applications in equipment where power, footprint,
and thermal constraints have historically lim ited their
adoption. AI/ML is particularly good at recognit ion in

the audio and video domain, allowing sensors and
devices to make decisions and react to the environment
around them. Smart embedded vision applications are

currently dominated by convolutional neural networks
(CNNs), which pass an input through a cascade of

convolutional layers to classify an im age or f ind a nd
identify regions of interest. Neural networks typ ically
are created using 32-bit floating point arithmetic

operators but are tolerant to minor deviations and can be
deployed using 8-bit integer math with minimal loss o f
precision.

Processing for neural networks is split up among

training and inference. Training is the process of
learning from large datasets and is done offline before
deploying an AI solution in a remote equipment, such as

in a space vehicle. Inference takes an existing trained

mailto:Aaron.Severance@Microchip.com
mailto:Diptesh.Nandi@Microchip.com
mailto:Ken.ONeill@Microchip.com

model and an input source to produce a result such as a
classification score. Figure 1 illustrates the process.
The VectorBlox Neural Network IP and SDK allow f or

trained networks to be run on RT PolarFire FPGAs in a
flexible, power-efficient manner.

RT PolarFire FPGAs are designed for low power and
high flexibility, making them ideal for integration in

equipment performing neural network inferencing.
FPGAs give an integration advantage over standalone
AI/ML solutions as they can integrate multiple

functions such as sensor interfacing and

network control. This can reduce the total bill of
materials, footprint, power consumption a nd thermal
output of an instrument. RT PolarFire FPGAs are

particularly well suited for low power remote sensing
applications. Compared to competing devices they use
non-volatile configuration memory instead of SRAM-

based configuration memory, which lowers their sta tic
power consumption in addition to preventing radiation-

induced configuration upsets. They also support 8 -b it
multiply-add operations in their math b locks making
them efficient for neural network inference.

Figure 1: Neural Networking at the Edge

Figure 2: VectorBlox AI Solution

3. VECTORBLOX AI SOLUTION [1]

The VectorBlox AI Solution from Microchip, shown in
Figure 2, is a combination of the CoreVectorBlox

Neural Network IP core which runs on PolarFire and
RT PolarFire FPGAs, and the VectorBlox Accelerator

SDK which converts trained models to 8-bit integer
models that the CoreVectorBlox IP core can process.
The VectorBlox Accelerator SDK also includes a bit-

accurate simulator that runs on most x86 PCs to allow
for early testing of quantized model accuracy and early
application integration. There is a reference hardware

platform using the PolarFire Video Kit which uses a
video camera as input and outputs to an HDMI display.

4. OVERLAY ARCHITECTURE AND

NETWORK SWITCHING

One key feature of the VectorBlox AI Solution is that it

uses an overlay architecture on top of the Po larFire o r
RT PolarFire FPGA. An overlay is not designed f o r a
specific network but rather can run different networks

with the same FPGA configuration. This means that
when iterating on network architectures and ret raining
networks, the FPGA design does not need to be

resynthesized. Instead, the VectorBlox Accelerator
SDK creates a new model file that will run on the sa me

FPGA configuration once the model is loaded onto
memory attached to the FPGA.

This also means that multiple networks can be
supported with the same FPGA configuration at
runtime, enabling applications to switch between

networks being run dynamically. For instance, an
application could use a fast, low-accuracy network f or

initial detection and then upon finding something of
interest run a higher-accuracy network that has f ewer
false positives. Or, an application can find regions o f

interest in an image and then run another algorithm on
those regions.

5. SUPPORTED INPUT FRAMEWORKS AND

NETWORK LAYER TYPES

The VectorBlox Accelerator SDK is designed to take in
networks from multiple input frameworks and produce a

common output representation. Networks in
TensorFlow, Caffe, ONNX, Keras, OpenVINO, and

Darknet form can be directly input into the SDK f low.
The CoreVectorBlox IP core overlay architecture can
support a variety of network architectures and layer

types as it has at its core a flexible vector processor,
which will be explained in more detail later. Th is a lso
means that new network layer types can be a dded v ia

updates to the VectorBlox Accelerator SDK. The layer
types currently supported are shown in Table 1.

Table 1: Layers Supported by the

VectorBlox Accelerator SDK

Layer Name Notes

Add

AvgPool

Clamp

Concat

Constant

Convolution

Gather Only Supported if output
is constant

GroupConvolution

Interpolate

LRN Very slow
implementation.

MatMul

MaxPool

Multiply Only Supported if

multiplying each channel
by a scalar

PReLU

Pad Only constant padding is
supported

Parameter

RegionYolo Removed from graph.

Must be handled with post
processing

ReLU

ReorgYolo

Reshape

Result

SoftMax Only supported if output

layer

ShapeOf

Squeeze

TopK Only Supported on
axis==1, mode ==max

Transpose Supported if node can be
replaced by a reshape or

order parameter is equal to
(0,2,3,1)

Unsqueeze

6. COREVECTORBLOX NEURAL NETWORK

IP

The CoreVectorBlox Neural Network IP core is a n
FPGA overlay consisting of a RISC-V scalar
microcontroller, VectorBlox MXP vector processor, and

a 2D grid of processing elements for processing
convolutional and dense layers. The core has an AXI 4

memory-mapped host port for reading and writing da ta
from external memory, and an AXI4-lite client port f or
an external host to control network processing. I t can

be configured in multiple size configurations to trade off
FPGA resource utilization for performance.

https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_arithmetic_Add_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_pooling_AvgPool_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_Clamp_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Concat_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_infrastructure_Constant_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_convolution_Convolution_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Gather_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_convolution_GroupConvolution_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_image_Interpolate_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_normalization_LRN_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_matrix_MatMul_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_pooling_MaxPool_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_arithmetic_Multiply_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_PReLU_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Pad_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_infrastructure_Parameter_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_detection_RegionYolo_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_ReLU_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_detection_ReorgYolo_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_Reshape_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_infrastructure_Result_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_SoftMax_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_ShapeOf_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_Squeeze_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_sort_TopK_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Transpose_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_Unsqueeze_1.html

7. ARCHITECTURE

Figure 3 gives an overview of the architecture of the

CoreVectorBlox IP. Incoming control signals f rom a n
external host set control registers which describe the

addresses of network inputs, outputs, parameters a nd
weights (bundled together into a Binary Large OBject
or BLOB) and can start processing networks and check

status. The microcontroller is a RISC-V soft processor
that communicates with the control registers a nd can
issue instructions to the MXP vector processor a s well

as do lightweight and irregular computation. It runs
firmware that is distributed as a BLOB and therefore

can be field upgraded; if a new network layer type is
needed that is not supported, the VectorBlox SDK ca n
be upgraded to support it and a new f irmware BLOB

can be downloaded to the FPGA-attached memory
without needing to resynthesize a new FPGA design.

The MXP is a vector processor with a scratchpad
architecture. It runs under control of the RISC-V

microcontroller, either directly or by replaying
instruction traces that are recorded when a network is
first run. The MXP vector instructions are data parallel,

performing the same operation on many elements within
a vector, and can be of a variable length up to the entire
size of the MXP scratchpad memory. Vector

instructions are executed on multiple parallel arithmetic
and logic units (ALUs); the datapath width depends on

which size configuration of CoreVectorBlox IP is used .
Vector operations may take multiple cycles to complete
if they are longer than the datapath is wide; wider

datapaths will process instructions more quick ly. The
MXP has a direct memory access (DMA) engine for
loading and storing data from/to external memory,

which can bring in large amounts of data from memory

with single instructions. Striding is supported for
bringing in partial maps when full maps will not fit
in the scratchpad memory. DMA and regular operations

can proceed in parallel, and memory accesses are
pipelined so that a new set of activations a nd weigh ts
will be brought in parallel to processing the curren t set

of activations and weights.

The CNN accelerator is a two-dimensional grid of
processing elements (PEs) which have a multiply-
accumulate unit and a small local RAM to store partial

sums. It can operate in a pointwise mode and a
depthwise mode. In the pointwise mode the two
dimensions correspond to parallel ou tpu t m aps being

worked on and parallel elements within an output map,
respectively. A 32x32 array of PEs can work on 32

elements of 32 output maps simultaneously.
Additionally, the local RAM can be used to switch
between more output elements and/or maps, allowing

for greater data reuse of input data. Data comes in from
the MXP as two inputs, weights and activations, which
get broadcast along the two axes to the PEs. The PEs

multiply weights by activations and accumulate them
into their local RAM. When computation is com plete ,

data goes into a shift register and the output maps a re
read out sequentially. The depthwise mode is similar to
pointwise mode, but because depthwise convolution

does not operate across multiple input maps the weights
come in from a separate small RAM and the first
dimension is parallel kernel elements rather than

parallel input maps.

The CoreVectorBlox IP has two clocks; a base clock
which runs at ~150 MHz and a datapath clock that runs
at twice the base clock rate. External interfaces are

clocked by the base clock. The RISC-V microcontroller

Figure 3: VectorBlox™ IP Architecture

and interface logic run a t the base clock rate, as well a s

the MXP decode logic, as these are complex p ipelines
with feedback loops. The MXP scratchpad m emory,
execution units, and the CNN accelerator all operate at

the 2x datapath clock for improved perf ormance per
area, as they are all feed-forward pipelines that are easy
to extend for higher frequencies. To match the decode

logic to the datapath logic the MXP datapath and CNN
accelerator appear to be a virtual width that is twice the

actual physical datapath width. For example, if the
datapath width is virtually 256-bits wide, it is physically
128-bits but processes a contiguous 256-bits over two

consecutive datapath cycles. The two clocks are
synchronous to each other, but the 2x clock uses
negative-edge flip flops (vs. the positive-edge flip flops

of the base clock) to ease hold timing when transferring
data between the clocks.

Table 2: VectorBlox™ IP Configurations

Configuration Vector
Processor

Width

Vector
Scratchpad

CNN
Accelerator

Array Size

V250 128-bit 64 kB 16x16

V500 256-bit 128 kB 16x32

V1000 256-bit 256 kB 32x32

CoreVectorBlox IP comes in three configurations:
V250, V500 and V1000. Table 2 lists how the MXP

vector processor width, MXP scratchpad memory size
and CNN accelerator size vary between the three

configurations. A table with look-up-table (LUT)
counts can be found in the results section.

8. VECTOR BLOX ACCELERATOR SDK

The VectorBlox Accelerator SDK takes a user network
and converts it to a BLOB that can run on the
CoreVectorBlox IP. Additionally, it provides a bit-

accurate functional simulator that runs on most x86 PCs
and can be used to evaluate the accuracy of the
converted network and allow for early application

development without needing an FPGA. The SDK is
created using Python® and can run under Windows® o r

Linux®.

9. NEURAL NETWORK CONVERSION FLOW

The conversion flow consists of three steps: 1)
intermediate representation (IR) conversion and general

optimizations; 2) calibration; and, 3) 8-bit integer
BLOB generation. The conversion flow is shown in

Figure 4.

The IR conversion and optimization stage takes in a

network from supported input frameworks
(TensorFlow, Caffe, etc.) and converts it to a common
IR using the open source OpenVINO tools. At this

stage, generic optimizations for inference are performed
such as folding batch normalization into o ther la yers.

The calibration stage finds the scaling factors needed to
convert a 32-bit floating-point model to 8-bit integer
math to balance the amount of saturation that occurs

with results that are too big for the 8-bit represen tation
against the loss of precision that occurs when weigh ts
are too small and important information is lost . I npu t

data is used to find the minimum and maximum value s
seen during processing, as well as to perform bias

correction to set the mean value seen across maps in the
quantized model as close as possible to that of the
original floating-point model. Biases are app lied on a

per-layer basis, while scaling factors are applied per-
map.

The 8-bit integer BLOB generation takes the input
model and calibration information and produces a

memory image that can be run on the x86 simulator o r
on the programmed FPGA. The BLOB consists of
hyperparameters (layers and sublayers, where layers are

major operations such as convolution and sublayers a re
minor operations that can be grouped together such as
activation functions) and weights. The hyperparameters

also describe how to schedule the network on the
hardware; for instance, layers which do not fit en t irely

into the CoreVectorBlox scratchpad are brought into the
accelerator in chunks and processed p iecemeal. Th is
schedule will be different for the different size

configurations (V250, V500 and V1000) though the
results will be bit identical.

Figure 4: VectorBlox SDK Conversion Flow

10. SIMULATOR

The bit-accurate simulator is a functional C m odel o f
the MXP vector processor and CNN accelerator a rray.
It can be called as a separate program or inserted in to a

user’s program with either a C or Python interface.

The simulator works by emulating the MXP at an

instruction level. It parses the network BLOB using the
same firmware that runs on the FPGA implementat ion
(though compiled for x86 instead of RISC-V). The

simulator models the CoreVectorBlox IP internal state
including the MXP scratchpad memory and CNN
accelerator accumulators but does not model the MXP’s

instruction pipeline, hazards or memory unit.
Instructions are executed using native host instructions

wherever possible; for instance, a vector addition
becomes a for-loop of scalar additions on the x86 host
(which can even be compiled into SIMD instructions in

some cases).

11. RESULTS

Table 3 shows the conversion accuracy of the 8-bit

model quantized by the VectorBlox Accelerato r SDK
relative to the original floating-point models. The f irst
column is a simple 8-bit quantization based on the

minimum and maximum values observed. The second
column is the accuracy achieved in hardware using the

output of the VectorBlox Accelerator SDK (includ ing
bias correction) and the final column is the ref erence
32-bit floating point accuracy. For image classification

top1 results are used for accuracy; for object detection
networks 11-point mAP accuracy scores are used. The
VectorBlox Accelerator SDK achieves state-of -the a rt

conversion accuracy from floating-point to 8-bit integer,
with typical accuracy loss under 1% from the reference

model. Table 4 gives results area and performance
across the three size configurations of the
CoreVectorBlox IP.

Table 3: VectorBlox IP Conversion Accuracy

Input Framework Model
Accuracy

Simple

8-bit

VectorBlox SDK

8-bit

Floating Point

32-bit

Caffe Squeezenet 1.1 58.8 58.6 59.2

TensorFlow Mobilenet v1 68.8 71.2 71.6

TensorFlow Mobilenet v2 69.0 71.6 72.0

ONNX Resnet18 v1 71.4 72.8 72.8

PyTorch Resnet50 75.2 75.0 75.0

Darknet TinyYOLO v2 VOC 54.2 54.4 55.1

Darknet TinyYOLO v3 CPC 39.5 40.4 40.9

The size numbers are listed in thousands of look-up

tables (kLUTs) as well as the percentage of LUTs
available on the RT PolarFire RTPF500T FPGA. The
maximum frequency (Fmax) for each configuration

along with the size of the CNN accelerator array
determines the peak giga operations per second (GOPs)
that the configuration can deliver. Fmax is listed for the

base clock; the MXP datapath and CNN accelerator
array operate at 2x the base clock internally. Power

numbers are listed in mW/GOP for relative comparison;
this number is the total power determined as the
dynamic power used by the CoreVectorBlox I P a long

with the static power used by the portion of the FPGA
occupied by the CoreVectorBlox IP. Performance is
listed for two popular computer vision networks,

Mobilenet-v1 and TinyYOLO-v3 in frames per second
(FPS).

There is a small frequency degradation going f rom the

V250 up to the V1000, mainly due to the dif ficu lty o f
placing the CNN accelerator array and routing signals
across it as its size increases. Power efficiency

increases at larger size configurations as the fixed power
costs of the control and interface logic a re amortized
over more GOPs from the accelerator array.

Performance scales well per GOP, close to linea rly f o r
TinyYOLO-v3. For Mobilenet-v1 there is close to

linear performance per GOP scaling from V250 to
V500, with a smaller increase from V500 to V1000
since the depthwise layers used in Mobilenet do not

increase in performance with CNN accelerator arra y
depth.

Table 4: VectorBlox™ IP Performance, Without Triple Module Redundancy (TMR)

CoreVectorBlox

Configuration

Size
Fmax (base)

MHz

Peak

GOPs
mW/GOP

Performance (FPS)

kLUTs
% of

RTPF500T
Mobilenet v1 TinyYOLO v3

V250 28 6% 154 79 7.0 26.2 9.1

V500 48 10% 143 146 6.4 47.7 16.6

V1000 63 13% 136 279 5.1 68.0 26.5

Table 5: VectorBlox IP Performance, With Synthesized Local TMR (Preliminary Results)

CoreVectorBlox
Configuration

Size Fmax

(base)
MHz

Peak
GOPs

mW/GOP

Performance (FPS)

kLUTs kDFF
% of

RTPF500T
Mobilenet v1 TinyYOLO v3

V250 56 66 14% 102 52 - 17.4 6.0

V500 97 116 24% 86 88 - 28.7 10.0

V1000 136 161 33% 76 156 - 38.0 14.8

Table 5 shows some preliminary utilization and

performance data with synthesized local triple m odule
redundancy (TMR) applied to the entire
CoreVectorBlox IP core. In addition to number of

kLUTs, the table includes an assessment of the number
of thousands of d-type flip-flops (kDFF) that are
consumed in the TMR implementation. As expected, the

number of flip-flops consumed exceeds the number o f
LUTs consumed, and there is a decrease in performance

of around 35% to 45%. This is observable in the
decreased peak GOP rate and the lower FPS rates
compared to the non-TMR implementations in Table 4 .

Power has not yet been measured for the TMR

implementation. Note that no radiation testing has yet

been performed on the CoreVectorBlox IP, either with
or without TMR, so it is not clear whether TMR gives
any significant improvement in operation of the IP in a

radiation environment.

Table 6 shows power consumed in PolarFire FPGAs for

three different implementations of the CoreVectorBlox
IP. We have the dynamic power consumed by the I P

running at peak GOPs, the static power consumed by
the portion of the FPGA where the IP resides, and the
total power. The final column in the table shows the

total power, normalized to mW per GOP.

Table 6: VectorBlox IP Power Consumption Breakout

CoreVectorBlox

Configuration
Peak GOPs

Dynamic Power

(mW)

Static Power

(mW)

Total Power

(mW)

Total Power

(mW/GOP)

V250 79 387 65 452 7.1

V500 146 698 127 825 6.4

V1000 279 1094 206 1300 5.1

12. RT POLARFIRE FPGA [2]

RT PolarFire is Microchip’s latest radiation tolerant
FPGA. It offers a substantial increase in density and

performance, relative to pre-existing radiation to lerant
FPGAs, to address the growing need for computational

throughput on orbit. In common with all Microchip
radiation tolerant FPGAs, it exhibits a complete absence
of radiation-induced configuration upsets, permit t ing

operation without the need to monitor, repair or reloa d
the FPGA configuration in space. The power
consumption of RT PolarFire is significantly lower than

any other FPGA at its density level. This enables use o f
power supply components with lower cost and smaller

footprint than would be the case with an FPGA with
higher power consumption. It also results in
considerable savings due to reduction or elimination o f

costly thermal management solutions designed to
dissipate excess heat in sensitive satellite payload
instruments. Finally, RT PolarFire is integrated into a

hermetically sealed ceramic package which enables
qualification to Qualified Manufacturers List (QML)

class V, as required by the most demanding space
programs. The main features of RT PolarFire are listed
in Table 7.

Table 7: Features of RT PolarFire FPGAs

In total ionizing dose radiation effects testing, RT

PolarFire FPGAs have shown minimal degra dat ion in
performance at 100 kRAD, and an increase in lea kage
current of 10% to 15%. Single event effects (SEE) have

been measured in proton and heavy ion radiation.
Radiation test results are summarized in Table 8.
Additional radiation testing is planned in 2021 and

2022.

Engineering models of RT PolarFire FPGAs are

available at the time of writing. QML qualification is in
progress, with completion of QML class Q qualification
anticipated in 2022 and QML class V in 2023.

Table 8: RT PolarFire Radiation Characteristics

Total Ionizing Dose
(TID)

100kRAD

Configuration Upsets
Absent

Tested to > 80 MeV-cm2/mg

Single Event Latch-Up
LETTH 80 MeV-cm2/mg

with GPIO operating at 1.8V

Single Event Upsets

(Unprotected DFF)

1E-7 errors/bit-day,

GEO SolarMin

Single Event Upsets
(DFF With Local TMR)

1E-11 errors/bit-day,
GEO SolarMin

On-Orbit
Reprogramming

Supported
500 cycles max.

13. CONCLUSION

The VectorBlox Accelerator SDK and CoreVectorBlox
IP provide an easy-to-use and flexible way to

implement neural networks on power-efficient RT
PolarFire FPGAs. The overlay architecture allows for
iteration on and changing of neural networks without

resynthesizing FPGA designs, including dynamically
changing networks at runtime. The core uses standard

AXI interfaces making it easy to add to existing
designs. The VectorBlox Accelerator SDK can take in
user networks from a variety of network frameworks

and quantize to 8-bit integer math with very little loss in
accuracy. Together, the VectorBlox AI Solution and
RT PolarFire FPGAs enable users to implement low-

power machine learning and artificial intelligence
solutions in space-flight instruments, overcoming

difficult power and thermal constraints.

14. REFERENCES

[1] Microchip web site, VectorBlox page

https://www.microchip.com/en-
us/products/fpgas-and-plds/fpga-design-
resources

[2] Microchip web site, RT PolarFire page

https://www.microchip.com/en-

us/products/fpgas-and-plds/fpgas/polarfire-
fpgas

RT PolarFire FPGA RTPF500T

DFF (TMR) 0

DFF (Non-TMR) 481K

4-Input Look-Up Tables (LUTs) 481K

Mathblocks (18x18 MACC) 1,480

Total RAM 33 Mbits

uPROM 513 Kbits

Serdes Transceivers
(250 Mbps – 10 Gbps)

24

I/O
(HSIO / GPIO)

584
(324 / 260)

On-Orbit Reprogramming
Supported

500 cycles max.

Package
1509 Ceramic

Column Grid Array

Qualification (Planned)
Mil Std 883

QML Class Q

QML Class V

https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-design-resources
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-design-resources
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-design-resources
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas

