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ABSTRACT 

In this paper, we describe the VectorBlox Accelerator 
software development kit (SDK) and how it is used  to  

optimize and convert trained Artificial Intelligence (AI) 
models, targeting power-optimized 28 nm field 
programmable gate arrays (FPGAs). Neura l networks 

are sourced from a variety of supported input 
frameworks, such as TensorFlow, Caffe, ONNX, a nd  

PyTorch. The VectorBlox Accelerator SDK performs a  
three-step conversion flow to optimize the networks, 
calibrate and scale them to 8-bit representation, and 

finally create an image for implementation on the 
radiation tolerant (RT) PolarFire FPGA. 
 

Power-efficient implementation of the neural network  
on the FPGA is achieved by a soft IP core called 

CoreVectorBlox. This soft IP core comprises a RISC-V 
processor and firmware, a vector processor, and a 
convolutional neural network accelerator, which 

consists of a two-dimensional array of processing 
elements, making use of the multiply-accumulate blocks 
in the RT PolarFire FPGA.  

 
By implementing neural networks in a matrix processor 

programmed in the fabric of the radiation-toleran t RT 
PolarFire FPGA, the networks can be iterated and 
changed without resynthesizing the FPGA, result ing in  

convenient, programmable low-power AI applications 
that can be dynamically changed at runtime.  
 

Examples of performance and utilization of a variety o f  
neural networks sourced from TensorFlow, Caffe, 

ONNX and PyTorch will be provided, for 
implementations both with and without t rip le m odule 
redundancy which may be desired for radiation 

mitigation purposes. 
 
The radiation-tolerant RT PolarFire FPGA will be 

described, with emphasis on radiation test data and 
schedules for qualification and flight models. 

1. BACKGROUND – AI IN SPACE 

The challenge faced by designers of space vehicle 
payload instruments is one of increasing demand f or 

information gathered on orbit. Sensor reso lut ions and 
frame rates are increasing, and now satellite  pa yload 
instruments are generating data at hundreds of giga b its 

per second. Downlink bandwidth is not increasing as 
quickly, which means that sensor data must be 

processed into useful information on orbit, in the 
payload instruments. This creates demand for ever 
larger, faster, and more feature-rich FPGAs. It also 

gives rise to an emerging requirement for sophisticated 
AI and machine learning (ML) capabilities to enable 
efficient processing of payload data, a nd for 

autonomous decision making on orbit. 
 

2. AI/ML TRENDS AND RT POLARFIRE FPGA 

TECHNOLOGY 

Artificial Intelligence and Machine Learning (AI /ML) 
are making their way into embedded devices to enable 

smart applications in equipment where power, footprint, 
and thermal constraints have historically lim ited their 
adoption.  AI/ML is particularly good at recognit ion in  

the audio and video domain, allowing sensors and 
devices to make decisions and react to the environment 
around them.  Smart embedded vision applications are 

currently dominated by convolutional neural networks 
(CNNs), which pass an input through a cascade of 

convolutional layers to classify an im age or f ind a nd 
identify regions of interest.  Neural networks typ ically  
are created using 32-bit floating point arithmetic 

operators but are tolerant to minor deviations and can be 
deployed using 8-bit integer math with minimal loss o f  
precision. 

 
Processing for neural networks is split up among 

training and inference.  Training is the process of 
learning from large datasets and is done offline before 
deploying an AI solution in a remote equipment, such as 

in a space vehicle.  Inference takes an existing trained  
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model and an input source to produce a result such as a  
classification score.  Figure 1 illustrates the process. 
The VectorBlox Neural Network IP and SDK allow f or 

trained networks to be run on RT PolarFire FPGAs in  a  
flexible, power-efficient manner. 
 

RT PolarFire FPGAs are designed for low power and 
high flexibility, making them ideal for integration in 

equipment performing neural network inferencing.  
FPGAs give an integration advantage over standalone 
AI/ML solutions as they can integrate multiple 

functions such as sensor interfacing and  

 

network control.  This can reduce the total bill of 
materials, footprint, power consumption a nd thermal 
output of an instrument.  RT PolarFire FPGAs are 

particularly well suited for low power remote sensing 
applications.  Compared to competing devices they use 
non-volatile configuration memory instead of  SRAM-

based configuration memory, which lowers their sta tic 
power consumption in addition to preventing radiation-

induced configuration upsets. They also support 8 -b it  
multiply-add operations in their math b locks making 
them efficient for neural network inference. 

 

Figure 1: Neural Networking at the Edge 

Figure 2: VectorBlox AI Solution 



 

3. VECTORBLOX AI SOLUTION [1] 

The VectorBlox AI Solution from Microchip, shown in  
Figure 2, is a  combination of the CoreVectorBlox 

Neural Network IP core which runs on PolarFire and 
RT PolarFire FPGAs, and the VectorBlox Accelerator 

SDK which converts trained models to 8-bit integer 
models that the CoreVectorBlox IP core can process.  
The VectorBlox Accelerator SDK also includes a bit-

accurate simulator that runs on most x86 PCs to  allow 
for early testing of quantized model accuracy and early  
application integration.  There is a reference hardware 

platform using the PolarFire Video Kit which uses a 
video camera as input and outputs to an HDMI display. 

 
4. OVERLAY ARCHITECTURE AND 

NETWORK SWITCHING 

One key feature of the VectorBlox AI Solution is that it  

uses an overlay architecture on top of the Po larFire  o r 
RT PolarFire FPGA.  An overlay is not designed f o r a 
specific network but rather can run different  networks 

with the same FPGA configuration.  This means that 
when iterating on network architectures and ret raining 
networks, the FPGA design does not need to be 

resynthesized.  Instead, the VectorBlox Accelerator 
SDK creates a new model file that will run on the sa me 

FPGA configuration once the model is loaded onto 
memory attached to the FPGA. 
 

This also means that multiple networks can be 
supported with the same FPGA configuration at 
runtime, enabling applications to switch between 

networks being run dynamically.  For instance, an 
application could use a fast, low-accuracy network  f or 

initial detection and then upon finding something of 
interest run a higher-accuracy network that  has f ewer 
false positives.  Or, an application can find regions o f  

interest in an image and then run another algorithm on  
those regions.  
 

5. SUPPORTED INPUT FRAMEWORKS AND 

NETWORK LAYER TYPES 

The VectorBlox Accelerator SDK is designed to take in  
networks from multiple input frameworks and produce a 

common output representation.  Networks in 
TensorFlow, Caffe, ONNX, Keras, OpenVINO, and 

Darknet form can be directly input into the SDK f low. 
The CoreVectorBlox IP core overlay architecture can 
support a variety of network architectures and layer 

types as it has at its core a flexible vector processor, 
which will be explained in more detail later.  Th is a lso  
means that new network layer types can be a dded v ia 

updates to the VectorBlox Accelerator SDK.  The layer 
types currently supported are shown in Table 1. 

 

 
 

Table 1: Layers Supported by the 

VectorBlox Accelerator SDK 

Layer Name Notes 

Add  

AvgPool  

Clamp  

Concat  

Constant  

Convolution  

Gather Only Supported if output 
is constant 

GroupConvolution  

Interpolate  

LRN Very slow 
implementation. 

MatMul  

MaxPool  

Multiply Only Supported if 

multiplying each channel 
by a scalar 

PReLU  

Pad Only constant padding is 
supported 

Parameter  

RegionYolo Removed from graph. 

Must be handled with post 
processing 

ReLU  

ReorgYolo  

Reshape  

Result  

SoftMax Only supported if output 

layer 

ShapeOf  

Squeeze  

TopK Only Supported on 
axis==1, mode ==max 

Transpose Supported if node can be 
replaced by a reshape or 

order parameter is equal to 
(0,2,3,1) 

Unsqueeze  

 
6. COREVECTORBLOX NEURAL NETWORK 

IP 

The CoreVectorBlox Neural Network IP core is a n 
FPGA overlay consisting of a RISC-V scalar 
microcontroller, VectorBlox MXP vector processor, and 

a 2D grid of processing elements for processing 
convolutional and dense layers.  The core has an  AXI 4 

memory-mapped host port for reading and writing da ta 
from external memory, and an AXI4-lite client port  f or 
an external host to control network processing.  I t  can  

be configured in multiple size configurations to trade off 
FPGA resource utilization for performance. 
 

https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_arithmetic_Add_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_pooling_AvgPool_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_Clamp_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Concat_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_infrastructure_Constant_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_convolution_Convolution_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Gather_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_convolution_GroupConvolution_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_image_Interpolate_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_normalization_LRN_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_matrix_MatMul_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_pooling_MaxPool_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_arithmetic_Multiply_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_PReLU_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Pad_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_infrastructure_Parameter_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_detection_RegionYolo_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_ReLU_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_detection_ReorgYolo_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_Reshape_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_infrastructure_Result_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_SoftMax_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_ShapeOf_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_Squeeze_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_sort_TopK_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Transpose_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_Unsqueeze_1.html


 

7. ARCHITECTURE 

Figure 3 gives an overview of the architecture of the 

CoreVectorBlox IP.  Incoming control signals f rom a n 
external host set control registers which describe the 

addresses of network inputs, outputs, parameters a nd  
weights (bundled together into a Binary Large OBject  
or BLOB) and can start processing networks and check 

status.  The microcontroller is a  RISC-V soft processor 
that communicates with the control registers a nd can 
issue instructions to the MXP vector processor a s well 

as do lightweight and irregular computation.  It runs 
firmware that is distributed as a BLOB and  therefore 

can be field upgraded; if a  new network layer type is 
needed that is not supported, the VectorBlox SDK ca n  
be upgraded to support it and a new f irmware BLOB 

can be downloaded to the FPGA-attached memory 
without needing to resynthesize a new FPGA design. 
 

The MXP is a vector processor with a scratchpad 
architecture.  It runs under control of the RISC-V 

microcontroller, either directly or by replaying 
instruction traces that are recorded when a  network  is 
first run.  The MXP vector instructions are data parallel, 

performing the same operation on many elements within 
a vector, and can be of a variable length up to the entire 
size of the MXP scratchpad memory. Vector 

instructions are executed on multiple parallel arithmetic 
and logic units (ALUs); the datapath width depends on 

which size configuration of CoreVectorBlox IP is used .  
Vector operations may take multiple cycles to complete 
if they are longer than the datapath is wide; wider 

datapaths will process instructions more quick ly. The 
MXP has a direct memory access (DMA) engine for 
loading and storing data from/to external memory, 

which can bring in large amounts of data from memory  

with single instructions.  Striding is supported for 
bringing in partial maps when full maps will not fit  
in the scratchpad memory.  DMA and regular operations  

can proceed in parallel, and memory accesses are 
pipelined so that a new set of activations a nd weigh ts 
will be brought in parallel to processing the curren t set  

of activations and weights. 
 

The CNN accelerator is a two-dimensional grid of 
processing elements (PEs) which have a multiply-
accumulate unit and a small local RAM to store partial 

sums.  It can operate in a pointwise mode and a 
depthwise mode.  In the pointwise mode the two 
dimensions correspond to parallel ou tpu t m aps being 

worked on and parallel elements within an output map, 
respectively.  A 32x32 array of PEs can work on 32 

elements of 32 output maps simultaneously.  
Additionally, the local RAM can be used to switch 
between more output elements and/or maps, allowing 

for greater data reuse of input data.  Data comes in from 
the MXP as two inputs, weights and activations, which  
get broadcast along the two axes to the PEs.  The PEs 

multiply weights by activations and accumulate them 
into their local RAM.  When computation is com plete , 

data goes into a shift register and the output  maps a re 
read out sequentially.  The depthwise mode is similar to  
pointwise mode, but because depthwise convolution 

does not operate across multiple input maps the weights 
come in from a separate small RAM and the first 
dimension is parallel kernel elements rather than 

parallel input maps. 
 

The CoreVectorBlox IP has two clocks;  a base clock 
which runs at ~150 MHz and a datapath clock that runs 
at twice the base clock rate.  External interfaces are 

clocked by the base clock.  The RISC-V microcontroller 

Figure 3: VectorBlox™ IP Architecture 
 



 

and interface logic run a t the base clock rate, as well a s 

the MXP decode logic, as these are complex p ipelines 
with feedback loops.  The MXP scratchpad m emory, 
execution units, and the CNN accelerator all operate at  

the 2x datapath clock for improved perf ormance per 
area, as they are all feed-forward pipelines that are easy 
to extend for higher frequencies.  To match the decode 

logic to the datapath logic the MXP datapath and CNN 
accelerator appear to be a virtual width that is twice the 

actual physical datapath width.  For example, if the 
datapath width is virtually 256-bits wide, it is physically 
128-bits but processes a contiguous 256-bits over two  

consecutive datapath cycles.  The two clocks are 
synchronous to each other, but the 2x clock uses 
negative-edge flip flops (vs. the positive-edge flip flops 

of the base clock) to ease hold timing when transferring 
data between the clocks. 

  
Table 2: VectorBlox™ IP Configurations 

Configuration Vector 
Processor 

Width 

Vector 
Scratchpad 

CNN 
Accelerator 

Array Size 

V250 128-bit 64 kB 16x16 

V500 256-bit 128 kB 16x32 

V1000 256-bit 256 kB 32x32 

 
CoreVectorBlox IP comes in three configurations: 
V250, V500 and V1000.  Table 2 lists how the MXP 

vector processor width, MXP scratchpad memory  size  
and CNN accelerator size vary between the three 

configurations.  A table with look-up-table (LUT) 
counts can be found in the results section.   
 

8. VECTOR BLOX ACCELERATOR SDK 

The VectorBlox Accelerator SDK takes a user network 
and converts it to a BLOB that can run on the 
CoreVectorBlox IP.  Additionally, it provides a bit-

accurate functional simulator that runs on most x86 PCs 
and can be used to evaluate the accuracy of the 
converted network and allow for early application 

development without needing an FPGA.  The SDK is 
created using Python® and can run under Windows® o r 

Linux®. 

9. NEURAL NETWORK CONVERSION FLOW 

The conversion flow consists of three steps: 1) 
intermediate representation (IR) conversion and general 

optimizations; 2) calibration; and, 3) 8-bit integer 
BLOB generation. The conversion flow is shown in 

Figure 4. 
 
The IR conversion and optimization stage takes in a 

network from supported input frameworks 
(TensorFlow, Caffe, etc.) and converts it to a  common 
IR using the open source OpenVINO tools.  At this 

stage, generic optimizations for inference are performed 
such as folding batch normalization into o ther la yers.  

The calibration stage finds the scaling factors needed to 
convert a  32-bit floating-point model to 8-bit integer 
math to balance the amount of saturation that  occurs 

with results that are too big for the 8-bit represen tation 
against the loss of precision that occurs when  weigh ts 
are too small and important information is lost .  I npu t 

data is used to find the minimum and maximum value s 
seen during processing, as well as to perform bias 

correction to set the mean value seen across maps in the 
quantized model as close as possible to that of the 
original floating-point model.  Biases are app lied on a  

per-layer basis, while scaling factors are applied per-
map. 
 

The 8-bit integer BLOB generation takes the input 
model and calibration information and produces a 

memory image that can be run on the x86 simulator o r 
on the programmed FPGA.  The BLOB consists of 
hyperparameters (layers and sublayers, where layers are 

major operations such as convolution and sublayers a re 
minor operations that can be grouped together such  as 
activation functions) and weights.  The hyperparameters 

also describe how to schedule the network on the 
hardware; for instance, layers which do not fit en t irely  

into the CoreVectorBlox scratchpad are brought into the 
accelerator in chunks and processed p iecemeal.  Th is 
schedule will be different for the different size 

configurations (V250, V500 and V1000) though the 
results will be bit identical. 



 

Figure 4: VectorBlox SDK Conversion Flow 
 

10. SIMULATOR 

The bit-accurate simulator is a functional C m odel o f  
the MXP vector processor and CNN accelerator a rray.  
It can be called as a separate program or inserted in to  a 

user’s program with either a C or Python interface. 

The simulator works by emulating the MXP at an 

instruction level.  It parses the network BLOB using the 
same firmware that runs on the FPGA implementat ion 
(though compiled for x86 instead of RISC-V).  The 

simulator models the CoreVectorBlox IP internal state 
including the MXP scratchpad memory and CNN 
accelerator accumulators but does not model the MXP’s 

instruction pipeline, hazards or memory unit.  
Instructions are executed using native host instructions 

wherever possible; for instance, a vector addition 
becomes a for-loop of scalar additions on the x86 host 
(which can even be compiled into SIMD instructions in  

some cases). 
 

11. RESULTS 

Table 3 shows the conversion accuracy of the 8-bit 

model quantized by the VectorBlox Accelerato r SDK 
relative to the original floating-point models.  The f irst  
column is a simple 8-bit quantization based on the 

minimum and maximum values observed. The second 
column is the accuracy achieved in hardware using the 

output of the VectorBlox Accelerator SDK (includ ing 
bias correction) and the final column is the ref erence 
32-bit floating point accuracy.  For image classification  

top1 results are used for accuracy; for object detection 
networks 11-point mAP accuracy scores are used.  The 
VectorBlox Accelerator SDK achieves state-of -the a rt 

conversion accuracy from floating-point to 8-bit integer, 
with typical accuracy loss under 1% from the reference 

model. Table 4 gives results area and performance 
across the three size configurations of the 
CoreVectorBlox IP. 

 

 
Table 3: VectorBlox IP Conversion Accuracy 

Input Framework Model 
Accuracy 

Simple  

8-bit 

VectorBlox SDK  

8-bit 

Floating Point  

32-bit 

Caffe Squeezenet 1.1 58.8 58.6 59.2 

TensorFlow Mobilenet v1 68.8 71.2 71.6 

TensorFlow Mobilenet v2 69.0 71.6 72.0 

ONNX Resnet18 v1 71.4 72.8 72.8 

PyTorch Resnet50 75.2 75.0 75.0 

Darknet TinyYOLO v2 VOC 54.2 54.4 55.1 

Darknet TinyYOLO v3 CPC 39.5 40.4 40.9 

 

 
 



 

The size numbers are listed in thousands of look-up 

tables (kLUTs) as well as the percentage of LUTs 
available on the RT PolarFire RTPF500T FPGA.  The 
maximum frequency (Fmax) for each configuration 

along with the size of the CNN accelerator array 
determines the peak giga operations per second (GOPs) 
that the configuration can deliver.  Fmax is listed for the 

base clock; the MXP datapath and CNN accelerator 
array operate at 2x the base clock internally.  Power 

numbers are listed in mW/GOP for relative comparison; 
this number is the total power determined as the 
dynamic power used by the CoreVectorBlox I P a long 

with the static power used by the portion of the FPGA 
occupied by the CoreVectorBlox IP.  Performance is 
listed for two popular computer vision networks, 

Mobilenet-v1 and TinyYOLO-v3 in frames per second 
(FPS). 

There is a small frequency degradation going f rom the 

V250 up to the V1000, mainly due to the dif ficu lty o f 
placing the CNN accelerator array and routing signals  
across it as its size increases.  Power efficiency 

increases at larger size configurations as the fixed power 
costs of the control and interface logic a re amortized 
over more GOPs from the accelerator array.  

Performance scales well per GOP, close to linea rly  f o r 
TinyYOLO-v3.  For Mobilenet-v1 there is close to 

linear performance per GOP scaling from V250 to 
V500, with a smaller increase from V500 to V1000 
since the depthwise layers used in Mobilenet do not 

increase in performance with CNN accelerator arra y 
depth. 
 

 
 

 
Table 4: VectorBlox™ IP Performance, Without Triple Module Redundancy (TMR) 

CoreVectorBlox  

Configuration 

Size 
Fmax (base) 

MHz 

Peak 

GOPs 
mW/GOP 

Performance (FPS) 

kLUTs 
% of 

RTPF500T 
Mobilenet v1 TinyYOLO v3 

V250 28 6% 154 79 7.0 26.2 9.1 

V500 48 10% 143 146 6.4 47.7 16.6 

V1000 63 13% 136 279 5.1 68.0 26.5 

 

 
Table 5: VectorBlox IP Performance, With Synthesized Local TMR (Preliminary Results) 

CoreVectorBlox  
Configuration 

Size Fmax 

(base) 
MHz 

Peak 
GOPs 

mW/GOP 

Performance (FPS) 

kLUTs kDFF 
% of 

RTPF500T 
Mobilenet v1 TinyYOLO v3 

V250 56 66 14% 102 52 - 17.4 6.0 

V500 97 116 24% 86 88 - 28.7 10.0 

V1000 136 161 33% 76 156 - 38.0 14.8 

 

 
Table 5 shows some preliminary utilization and 

performance data with synthesized local triple m odule 
redundancy (TMR) applied to the entire 
CoreVectorBlox IP core. In addition to number of 

kLUTs, the table includes an assessment of the number 
of thousands of d-type flip-flops (kDFF) that are 
consumed in the TMR implementation. As expected, the 

number of flip-flops consumed exceeds the number o f  
LUTs consumed, and there is a decrease in performance 

of around 35% to 45%. This is observable in the 
decreased peak GOP rate and the lower FPS rates 
compared to the non-TMR implementations in Table 4 . 

Power has not yet been measured for the TMR 

implementation. Note that no radiation testing has yet  

been performed on the CoreVectorBlox IP, either with  
or without TMR, so it is not clear whether TMR gives 
any significant improvement in operation of the IP in  a  

radiation environment. 
 
Table 6 shows power consumed in PolarFire FPGAs for 

three different implementations of the CoreVectorBlox 
IP. We have the dynamic power consumed by  the I P 

running at peak GOPs, the static power consumed by  
the portion of the FPGA where the IP resides, and the 
total power. The final column in the table shows the 

total power, normalized to mW per GOP. 
 

Table 6: VectorBlox IP Power Consumption Breakout 

CoreVectorBlox 

Configuration 
Peak GOPs 

Dynamic Power 

(mW) 

Static Power 

(mW) 

Total Power 

(mW) 

Total Power 

(mW/GOP) 

V250 79 387 65 452 7.1 

V500 146 698 127 825 6.4 

V1000 279 1094 206 1300 5.1 

 



 

12. RT POLARFIRE FPGA [2] 

RT PolarFire is Microchip’s latest radiation tolerant 
FPGA. It offers a  substantial increase in density and 

performance, relative to pre-existing radiation to lerant 
FPGAs, to address the growing need for computational 

throughput on orbit. In common with all Microchip 
radiation tolerant FPGAs, it exhibits a  complete absence 
of radiation-induced configuration upsets, permit t ing 

operation without the need to monitor, repair or reloa d 
the FPGA configuration in space. The power 
consumption of RT PolarFire is significantly lower than 

any other FPGA at its density level. This enables use o f 
power supply components with lower cost and smaller 

footprint than would be the case with an FPGA with 
higher power consumption. It also results in 
considerable savings due to reduction or elimination  o f 

costly thermal management solutions designed to 
dissipate excess heat in sensitive satellite payload 
instruments. Finally, RT PolarFire is integrated into a 

hermetically sealed ceramic package which enables 
qualification to Qualified Manufacturers List  (QML) 

class V, as required by the most demanding space 
programs. The main features of RT PolarFire are listed  
in Table 7. 

 
Table 7: Features of RT PolarFire FPGAs 

 
In total ionizing dose radiation effects testing, RT 

PolarFire FPGAs have shown minimal degra dat ion in  
performance at 100 kRAD, and an increase in  lea kage 
current of 10% to 15%. Single event effects (SEE) have 

been measured in proton and heavy ion radiation. 
Radiation test results are summarized in Table 8. 
Additional radiation testing is planned in 2021 and 

2022. 
 

 

Engineering models of RT PolarFire FPGAs are 

available at the time of writing. QML qualification is in  
progress, with completion of QML class Q qualification 
anticipated in 2022 and QML class V in 2023. 

 
Table 8: RT PolarFire Radiation Characteristics 

Total Ionizing Dose 
(TID) 

100kRAD 

Configuration Upsets 
Absent 

Tested to > 80 MeV-cm2/mg 

Single Event Latch-Up 
LETTH 80 MeV-cm2/mg 

with GPIO operating at 1.8V 

Single Event Upsets 

(Unprotected DFF) 

1E-7 errors/bit-day,  

GEO SolarMin 

Single Event Upsets 
(DFF With Local TMR)  

1E-11 errors/bit-day,  
GEO SolarMin 

On-Orbit 
Reprogramming 

Supported 
500 cycles max. 

 

 

13. CONCLUSION 

The VectorBlox Accelerator SDK and CoreVectorBlox 
IP provide an easy-to-use and flexible way to 

implement neural networks on power-efficient RT 
PolarFire FPGAs.  The overlay architecture allows for 
iteration on and changing of neural networks without 

resynthesizing FPGA designs, including dynamically 
changing networks at runtime.  The core uses standard 

AXI interfaces making it easy to add to existing 
designs.  The VectorBlox Accelerator SDK can take in 
user networks from a variety of network frameworks 

and quantize to 8-bit integer math with very little loss in 
accuracy.  Together, the VectorBlox AI Solution and 
RT PolarFire FPGAs enable users to implement low-

power machine learning and artificial intelligence 
solutions in space-flight instruments, overcoming 

difficult power and thermal constraints. 
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RT PolarFire FPGA RTPF500T 

DFF (TMR) 0 

DFF (Non-TMR) 481K 

4-Input Look-Up Tables (LUTs) 481K 

Mathblocks (18x18 MACC) 1,480 

Total RAM  33 Mbits 

uPROM 513 Kbits 

Serdes Transceivers  
(250 Mbps – 10 Gbps) 

24 

I/O  
(HSIO / GPIO) 

584 
(324 / 260) 

On-Orbit Reprogramming 
Supported 

500 cycles max. 

Package 
1509 Ceramic 

Column Grid Array 

Qualification (Planned) 
Mil Std 883 

QML Class Q  

QML Class V 
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