EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESING (OBDP2021), 14-17 JUNE 2021

USING THE VECTORBLOX™ ACCELERATOR SOFTWARE DEVELOPMENT KIT TO
CREATE PROGRAMMABLE AI/ML APPLICATIONSIN
RADIATION TOLERANT (RT) POLARFIRE® FPGAs

Aaron Severance ®, Diptesh Nandi @, Ken O’Neill (9

WMicrochip Technology Inc, 2355 W Chandler Blvd, Chandler AZ, 85224, USA
Aaron.Severance @Microchip.com

Diptesh.Nandi@Microchip.com

Ken.ONeill @Microchip.com

ABSTRACT

In this paper, we describe the VectorBlox Accelerator
software development kit (SDK) and howit is used to
optimize andconvert trained Artificial Intelligence (Al)
models, targeting power-optimized 28 nm field
programmable gate arrays (FPGAs). Neura |l networks
are sourced from a variety of supported input
frameworks, suchas TensorFlow, Caffe, ONNX, and
PyTorch. The VectorBlox Accelerator SDK performs a
three-step conversion flow to optimize the networks,
calibrate and scale them to 8-bit representation, and
finally create an image for implementation on the
radiation tolerant (RT) PolarFire FPGA.

Power-efficient implementation of theneural network
on the FPGA is achieved by a soft IP core called
CoreVectorBlox. Thissoft IP core comprisesa RISC-V
processor and firmware, a vector processor, and a
convolutional neural network accelerator, which
consists of a two-dimensional array of processing
elements, making use of the multiply-accumulate blocks
in the RT PolarFire FPGA.

By implementing neural networks in a matrix processor
programmed in the fabric of theradiation-tolerant RT
PolarFire FPGA, the networks can be iterated and
changed without resynthesizing the FPGA, resulting in
convenient, programmable low-power Al applications
that canbe dynamically changedat runtime.

Examples of performanceand utilization of a varietyof
neural networks sourced from TensorFlow, Caffe,
ONNX and PyTorch will be provided, for
implementations both with and without triple module
redundancy which may be desired for radiation
mitigation purposes.

The radiation-tolerant RT PolarFire FPGA will be
described, with emphasis on radiation test data and
schedules for qualification and flight models.

1. BACKGROUND-AI IN SPACE

The challenge faced by designers of space vehicle
payload instrumentsis one of increasing demand for
information gathered on orbit. Sensorresolutions and
frameratesareincreasing, andnow satellite payload
instruments are generating data at hundreds of giga biits
per second. Downlink bandwidth is not increasing as
quickly, which means that sensor data must be
processed into useful information on orbit, in the
payload instruments. This creates demand for ever
larger, faster, and more feature-rich FPGAs. It also
gives rise to an emerging requirementforsophisticated
Al and machine learning (ML) capabilities to enable
efficient processing of payload data, and for
autonomous  decision  making on  orbit.

2. AI/ML TRENDSAND RT POLARFIRE FPGA
TECHNOLOGY

Artificial Intelligence and Machine Learning (Al/ML)
are makingtheirway into embedded devicesto enable
smart applications in equipmentwhere power, footprint,
and thermal constraints have historically limited their
adoption. Al/ML is particularly goodatrecognition in
the audio and video domain, allowing sensors and
devicesto make decisions andreact to the environment
around them. Smart embedded visionapplications are
currently dominated by convolutional neuralnetworks
(CNNs), which pass an input through a cascade of
convolutional layersto classifyanimage or find and
identify regions of interest. Neuralnetworkstypically
are created using 32-bit floating point arithmetic
operators but are tolerantto minor deviations and can be
deployedusing 8-bit integer math with minimal loss of
precision.

Processing for neural networks is split up among
training and inference. Training is the process of
learning from large datasets and is done offline before
deployingan Al solution in a remote equipment, suchas
in a spacevehicle. Inferencetakesanexistingtrained


mailto:Aaron.Severance@Microchip.com
mailto:Diptesh.Nandi@Microchip.com
mailto:Ken.ONeill@Microchip.com

= Training data
iu Image Database:

U ImageNet, Pascal
VOC, CIFAR10...
Caffe l
theano Training algorithm |

Evaluate

Compute
Platforms

L

’ CPU or GPU

e Initial Graph:
I torch gi Yolo, ResNet,

Network Training
* In the data centre

+ Large compute capacity
* No power or space constraints

+ At the edge, on sensors
« Power and space constrained
* Requires security and reliability

Implementation on the edge - Cameras, sensors

Figure 1: Neural Networkingat the Edge

modeland aninputsource to producea result such as a
classification score. Figure 1 illustrates the process.
The VectorBlox Neural Network IPand SDK allow for
trained networksto be runon RT PolarFire FPGAsin a
flexible, power-efficient manner.

RT PolarFire FPGAs are designed for low power and
high flexibility, making them ideal for integration in
equipment performing neural network inferencing.
FPGAs give an integration advantage over standalone
AI/ML solutions as they can integrate multiple
functions such as sensor interfacingand

network control. This can reduce the total bill of
materials, footprint, power consumption and thermal
output of an instrument. RT PolarFire FPGAs are
particularly well suited for low power remote sensing
applications. Comparedto competing devicesthey use
non-volatile configurationmemory instead of SRAM-
based configuration memory, which lowers their static
power consumption in additionto preventing radiation-
induced configurationupsets. Theyalso support 8-bit
multiply-add operations in theirmath blocks making
them efficient for neural network inference.

CoreVectorBlox | e '

Y
€ ONNX <_

1 icrosont

.}
2 e CNTK

@xnet pyTbRrRCH

o

Reference Demos

Quantization & Calibration

VectorBlox Simulator ‘

Pre-trained, Pre-optimized CNNs

Frameworks

Reference Hardware

Runtime Libraries & Software Binaries

Software Dev Kit

Polarfire Video Kit

Figure 2: VectorBlox Al Solution



3. VECTORBLOXAISOLUTIONM

The VectorBlox Al Solution from Microchip, shown in
Figure 2, is a combination of the CoreVectorBlox
Neural Network IP core which runs on PolarFire and
RT PolarFire FPGAs, and the VectorBlox Accelerator
SDK which converts trained models to 8-bit integer
modelsthatthe CoreVectorBlox IP core can process.
The VectorBlox Accelerator SDK also includes a bit-
accurate simulator that runson most x86 PCs to allow
forearly testing of quantized modelaccuracyand early
application integration. Thereisa reference hardware
platform using the PolarFire Video Kit which uses a
video cameraasinputand outputstoan HDM I display.

4. OVERLAY ARCHITECTURE AND
NETWORK SWITCHING

One key feature of the VectorBlox Al Solutionisthat it
usesan overlayarchitecture ontopofthe PolarFire or
RT PolarFire FPGA. Anoverlayisnotdesigned for a
specific network butrather canrun different networks
with the same FPGA configuration. This means that
when iteratingon network architecturesand retraining
networks, the FPGA design does not need to be
resynthesized. Instead, the VectorBlox Accelerator
SDK createsa newmodel file that willrun on the same
FPGA configuration once the model is loaded onto
memory attached tothe FPGA.

This also means that multiple networks can be
supported with the same FPGA configuration at
runtime, enabling applications to switch between
networks being run dynamically. For instance, an
application could usea fast, low-accuracy network for
initial detection and then upon finding something of
interest run a higher-accuracy network that has fewer
false positives. Or,an application canfind regions of
interest in an image and thenrun anotheralgorithm on
those regions.

5. SUPPORTED INPUT FRAMEWORKS AND
NETWORKLAYERTYPES

The VectorBlox Accelerator SDK is designed to takein
networks from multiple input frameworks and produce a
common output representation.  Networks in
TensorFlow, Caffe, ONNX, Keras, OpenVINO, and
Darknetform canbe directly inputinto the SDK flow.
The CoreVectorBlox IP core overlay architecture can
support a variety of network architectures and layer
types as it has at its core a flexible vector processor,
which will be explained in more detail later. This also
means that new network layertypescan be added via
updatesto the VectorBlox Accelerator SDK. The layer
typescurrently supportedare shownin Table 1.

Table 1: Layers Supported by the
VectorBloxAccelerator SDK

Layer Name Notes

Add

AvgPool

Clamp

Concat

Constant

Convolution

Gather Only Supported if output
is constant

GroupConvolution

Interpolate

LRN Very slow
implementation.

MatMul

MaxPool

Multiply Only Supported if
multiplyingeachchannel
by a scalar

PRel U

Pad Only constant padding is
supported

Parameter

RegionYolo Removedfrom graph.
Must be handled with post
processing

RelLU

ReorgYolo

Reshape

Result

SoftMax Only supported if output
layer

ShapeOf

Squeeze

TopK Only Supported on
axis==1, mode ==max

Transpose Supported if node canbe
replacedby a reshape or
order parameter isequal to
0,2,3,1)

Unsqueeze

6. COREVECTORBLOXNEURAL NETWORK
IP

The CoreVectorBlox Neural Network IP core is an
FPGA overlay consisting of a RISC-V scalar
microcontroller, VectorBlox MXP vector processor, and
a 2D grid of processing elements for processing
convolutionalanddense layers. The core hasan AX14
memory-mapped hostport for readingand writing data
from external memory, andan AXI4-lite client port for
an external hostto control network processing. It can
be configuredin multiple size configurations to trade off
FPGA resource utilization for performance.



https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_arithmetic_Add_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_pooling_AvgPool_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_Clamp_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Concat_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_infrastructure_Constant_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_convolution_Convolution_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Gather_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_convolution_GroupConvolution_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_image_Interpolate_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_normalization_LRN_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_matrix_MatMul_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_pooling_MaxPool_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_arithmetic_Multiply_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_PReLU_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Pad_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_infrastructure_Parameter_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_detection_RegionYolo_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_ReLU_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_detection_ReorgYolo_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_Reshape_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_infrastructure_Result_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_activation_SoftMax_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_ShapeOf_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_Squeeze_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_sort_TopK_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_movement_Transpose_1.html
https://docs.openvinotoolkit.org/2021.1/openvino_docs_ops_shape_Unsqueeze_1.html

Internal Control Interconnect

Instruction
Slave

MXP
Vector
Processor

Peripheral
Master

Microcontroller

>

I$ Master  D$ Master

Internal
Slave

Control
Registers
S_AXI External
—_—
Slave DMA
Master

2

3
5

o
35
b

CNN
Accelerator

| !

M_AXI

Internal Data Interconnect

Figure 3: VectorBlox™IP Architecture

7. ARCHITECTURE

Figure 3 gives an overview of the architecture of the
CoreVectorBlox IP. Incomingcontrolsignalsfrom an
external host set control registers which describe the
addresses of network inputs, outputs, parameters and
weights (bundled together into a Binary Large OBject
or BLOB)andcan startprocessing networksandcheck
status. The microcontrolleris a RISC-V softprocessor
that communicates with the controlregisters and can
issue instructions tothe MXP vector processor as well
as do lightweight and irregular computation. It runs
firmware that is distributed asa BLOB and therefore
can be field upgraded; if a new network layer type is
needed thatis not supported, the VectorBlox SDK can
be upgraded tosupportitanda new firmware BLOB
can be downloaded to the FPGA-attached memory
without needingto resynthesize a new FPGA design.

The MXP is a vector processor with a scratchpad
architecture. It runs under control of the RISC-V
microcontroller, either directly or by replaying
instruction traces that are recordedwhen a network is
firstrun. The MXP vector instructions are data parallel,
performing the same operation on many elements within
a vector,andcan be ofa variable length upto the entire
size of the MXP scratchpad memory. Vector
instructions are executed on multiple parallel arithmetic
and logic units (ALUs); the datapath width depends on
which size configuration of CoreVectorBlox IP isused.
Vector operations may take multiple cycles to complete
if they are longer than the datapath is wide; wider
datapaths will process instructions more quickly. The
MXP has a direct memory access (DMA) engine for
loading and storing data from/to external memory,
which can bring in large amounts of data from memory

with single instructions. Striding is supported for
bringingin partial maps whenfullmaps will not fit

in the scratchpad memory. DMA and regularoperations
can proceed in parallel, and memory accesses are
pipelined so that a new set of activations and weights
will be brought in parallelto processingthe current set
of activations and weights.

The CNN accelerator is a two-dimensional grid of
processing elements (PEs) which have a multiply-
accumulate unit and a small local RAM to store partial
sums. It can operate in a pointwise mode and a
depthwise mode. In the pointwise mode the two
dimensions correspond to paralleloutput maps being
worked on and parallel elements within an output map,
respectively. A 32x32 array of PEs can work on 32
elements of 32 output maps simultaneously.
Additionally, the local RAM can be used to switch
between more output elementsand/ormaps, allowing
forgreaterdatareuse of inputdata. Data comesin from
the MXP astwo inputs, weights and activations, which
getbroadcastalongthe two axestothe PEs. The PEs
multiply weights by activationsand accumulate them
into theirlocal RAM. When computationiscomplete,
data goes into a shift registerandthe output maps are
read out sequentially. The depthwise mode issimilarto
pointwise mode, but because depthwise convolution
does not operate across multiple input maps the weights
come in from a separate small RAM and the first
dimension is parallel kernel elements rather than
parallelinputmaps.

The CoreVectorBlox IP hastwo clocks; a base clock
which runsat~150 MHz anda datapathclock thatruns
at twice the base clock rate. External interfaces are
clocked by the baseclock. The RISC-V microcontroller



and interface logic run at thebase clock rate,aswell as
the MXP decode logic, asthese are complex pipelines
with feedback loops. The MXP scratchpad memory,
execution units,andthe CNN acceleratorall operate at
the 2x datapath clock forimproved performance per
area,astheyare allfeed-forward pipelines that are easy
to extendforhigher frequencies. To match the decode
logic to the datapath logic the MXP datapathand CNN
acceleratorappearto be a virtual width that is twice the
actual physical datapath width. Forexample, if the
datapathwidth is virtually 256-bits wide, it is physically
128-bits butprocesses a contiguous 256-bits over two
consecutive datapath cycles. The two clocks are
synchronous to each other, but the 2x clock uses
negative-edge flip flops (vs. the positive-edge flip flops
of the baseclock) to ease holdtimingwhentransferring
data between the clocks.

Table 2: VectorBlox™ P Configurations

Configuration | Vector Vector CNN
Processor | Scratchpad | Accelerator
Width Array Size
V250 128-bit 64 kB 16x16
V500 256-hit 128 kB 16x32
V1000 256-bit 256 kB 32x32

CoreVectorBlox IP comes in three configurations:
V250, V500 and V1000. Table 2 lists how the MXP
vector processor width, MXP scratchpad memory size
and CNN accelerator size vary between the three
configurations. A table with look-up-table (LUT)
counts canbe foundin the results section.

8. VECTORBLOXACCELERATORSDK

The VectorBlox Accelerator SDK takesa user network
and converts it to a BLOB that can run on the
CoreVectorBlox IP. Additionally, it provides a bit-
accurate functional simulator that runs on mostx86 PCs
and can be used to evaluate the accuracy of the
converted network and allow for early application
development without needingan FPGA. The SDK is
created using Python®and can run under Windows® or
Linux®.

9. NEURAL NETWORK CONVERSIONFLOW

The conversion flow consists of three steps: 1)
intermediate representation (IR) conversionand general
optimizations; 2) calibration; and, 3) 8-bit integer
BLOB generation. The conversion flow is shown in
Figure 4.

The IR conversion and optimization stage takes in a
network  from supported input frameworks
(TensorFlow, Caffe, etc.)andconvertsittoa common
IR using the open source OpenVINO tools. At this
stage, generic optimizations for inferenceare performed
such asfoldingbatchnomalization into other layers.
The calibration stage finds thescaling factors needed to
convert a 32-bit floating-point model to 8-bit integer
mathto balancethe amountof saturation that occurs
with resultsthataretoobigforthe 8-bit representation
against the loss of precisionthat occurswhen weights
aretoo smalland important informationislost. Input
dataisused to find the minimumand maximumvalues
seen during processing, as well as to perform bias
correction to set the meanvalue seen across maps in the
guantized model as close as possible to that of the
originalfloating-point model. Biasesareapplied on a
per-layer basis, while scaling factors are applied per-
map.

The 8-bit integer BLOB generation takes the input
model and calibration information and produces a
memory imagethatcan be runon the x86simulator or
on the programmed FPGA. The BLOB consists of
hyperparameters (layers and sublayers, where layers are
major operations such as convolutionandsublayersare
minor operations that can begrouped together such as
activation functions) and weights. The hyperparameters
also describe how to schedule the network on the
hardware; forinstance, layerswhich donotfitentirely
into the CoreVectorBlox scratchpad are brought into the
acceleratorin chunksandprocessedpiecemeal. This
schedule will be different for the different size
configurations (V250, V500 and V1000) though the
results will be bit identical.



Optimizations

/ MODEL OPT

Calibration

|

MODEL 18

Hardware

Figure 4: VectorBlox SDK Conversion Flow

10. SIMULATOR

The bit-accurate simulatorisa functional C model of
the MXP vector processorand CNNaccelerator array.
It can be called asaseparateprogramorinsertedinto a
user’s program with eithera C or Python interface.

The simulator works by emulating the MXP at an
instruction level. It parsesthe network BLOBusingthe
same firmware that runs on the FPGAimplementation
(though compiled for x86 instead of RISC-V). The
simulator models the CoreVectorBlox IP internal state
including the MXP scratchpad memory and CNN
accelerator accumulators but does not modelthe MXP’s
instruction pipeline, hazards or memory unit.
Instructions are executed using native host instructions
wherever possible; for instance, a vector addition
becomesa for-loop of scalaradditions on the x86 host
(which can evenbe compiled into SIMD instructions in
some cases).

11. RESULTS

Table 3 shows the conversion accuracy of the 8-bit
model quantized by the VectorBlox Accelerator SDK
relative to the original floating-point models. The first
column is a simple 8-bit quantization based on the
minimum and maximum values observed. The second
column isthe accuracy achieved in hardware using the
output of the VectorBlox Accelerator SDK (including
biascorrection) andthe finalcolumnis the reference
32-bit floating point accuracy. Forimage classification
topl resultsareused foraccuracy; forobject detection
networks 11-pointmAP accuracy scoresare used. The
VectorBlox Accelerator SDK achieves state-of-the art
conversionaccuracy from floating-point to 8-bit integer,
with typicalaccuracy loss under 1% fromthe reference
model. Table 4 gives results area and performance
across the three size configurations of the
CoreVectorBlox IP.

Table 3: VectorBlox IP Conversion Accuracy

Accuracy

Input Framework Model Simple VectorBlox SDK Floating Point

8-bit 8-bit 32-bit
Caffe Squeezenet 1.1 58.8 58.6 59.2
TensorFlow Mobilenet vl 68.8 71.2 71.6
TensorFlow Mobilenet v2 69.0 71.6 72.0
ONNX Resnet18v1 71.4 72.8 72.8
PyTorch Resnet50 75.2 75.0 75.0
Darknet TinyYOLOvVv2VOC 54.2 54.4 55.1
Darknet TinyYOLOV3CPC 39.5 40.4 40.9




The size numbers are listed in thousands of look-up
tables (KLUTs) as well as the percentage of LUTs
available on theRT PolarFire RTPF500TFPGA. The
maximum frequency (Fmax) for each configuration
along with the size of the CNN accelerator array
determines the peak giga operations per second (GOPs)
that theconfiguration candeliver. Fmaxis listed for the
base clock; the MXP datapath and CNN accelerator
array operate at 2x the base clock internally. Power
numbersare listed in mW/GOP for relative comparison;
this number is the total power determined as the
dynamic power used by the CoreVectorBlox IP along
with the static power used by the portionof the FPGA
occupied by the CoreVectorBlox IP. Performance is
listed for two popular computer vision networks,
Mobilenet-vland TinyYOLO-v3in framespersecond
(FPS).

There is a smallfrequency degradation goingfrom the
V250 up to the V1000, mainly due to thedifficulty of
placingthe CNNacceleratorarray and routing signals
across it as its size increases. Power efficiency
increases at larger size configurations as the fixed power
costsof the controland interface logic are amortized
over more GOPs from the accelerator array.
Performance scales well per GOP, close to linearly for
TinyYOLO-v3. For Mobilenet-v1 there is close to
linear performance per GOP scaling from V250 to
V500, with a smaller increase from V500 to V1000
since the depthwise layers used in Mobilenet do not
increase in performance with CNN accelerator array
depth.

Table 4: VectorBlox™ P Performance, Without Triple Module Redundancy (TMR)

CoreVectorBlox Size %o Fmax (base) Peak mW/GOP Performance (FPS)
Configuration | KLUTs RTPF500T MHz GOPs Mobilenetvl | TinyYOLOV3
V250 28 6% 154 79 7.0 26.2 9.1
V500 48 10% 143 146 6.4 477 16.6
V1000 63 13% 136 279 5.1 68.0 26.5
Table 5: VectorBloxIP Performance, With Synthesized Local TMR (Preliminary Results)
Core\/_ecto |1_3on Size T g)r: Sae>; Peak iGop -Perform anole (FPS)
Configuration | kLUTs | kDFF RTPE500T MH7 GOPs Mobilenetvl | TinyYOLOV3
V250 56 66 14% 102 52 - 17.4 6.0
V500 97 116 24% 86 88 - 28.7 10.0
V1000 136 161 33% 76 156 - 38.0 14.8

Table 5 shows some preliminary utilization and
performancedata with synthesized local triple module
redundancy (TMR) applied to the entire
CoreVectorBlox IP core. In addition to number of
KLUTs, the table includes anassessment ofthe number
of thousands of d-type flip-flops (kDFF) that are
consumed in the TMR implementation. As expected, the
number of flip-flopsconsumed exceedsthenumber of
LUTsconsumed,andthere isa decrease in performance
of around 35% to 45%. This is observable in the
decreased peak GOP rate and the lower FPS rates
comparedto the non-TMR implementationsin Table 4.
Power has not yet been measured for the TMR

implementation. Note that no radiationtesting has yet
been performed on the CoreVectorBlox IP, either with
or without TMR, so itis not clearwhether TMR gives
any significant improvement in operation of the IP in a
radiation environment.

Table 6 shows power consumed in PolarFire FPGAs for
three differentimplementations of the CoreVectorBlox
IP.We have the dynamic powerconsumed by the IP
runningat peak GOPs, the static power consumed by
the portion ofthe FPGAwhere the IPresides, and the
total power. The final column in the table shows the
total power, normalizedto mW per GOP.

Table 6: VectorBlox IP Power Consumption Breakout

CoreVectorBlox Peak GOPs Dynamic Power Static Power TotalPower TotalPower
Configuration (mW) (mW) (mW) (mW/GOP)
V250 79 387 65 452 7.1
V500 146 698 127 825 6.4
V1000 279 1094 206 1300 5.1




12. RT POLARFIRE FPGA

RT PolarFire is Microchip’s latest radiation tolerant
FPGA. It offers a substantial increase in density and
performance, relative to pre-existing radiation tolerant
FPGAs, to address the growing need for computational
throughput on orbit. In common with all Microchip
radiation tolerant FPGAs, it exhibits a completeabsence
of radiation-induced configurationupsets, permitting
operationwithout the need to monitor, repairor reload
the FPGA configuration in space. The power
consumption of RT PolarFire is significantly lower than
any other FPGAat its density level. Thisenablesuse o f
power supply components with lower costand smaller
footprint than would be the case with an FPGA with
higher power consumption. It also results in
considerable savings due to reductionorelimination of
costly thermal management solutions designed to
dissipate excess heat in sensitive satellite payload
instruments. Finally, RT PolarFire is integrated into a
hermetically sealed ceramic package which enables
qualificationto Qualified Manufacturers List (QML)
class V, as required by the most demanding space
programs. The main features of RT PolarFire arelisted
in Table7.

Table 7: Features of RT PolarFire FPGAs

Engineering models of RT PolarFire FPGAs are
available atthe time of writing. QML qualificationis in
progress, with completion of QML class Q qualification
anticipatedin 2022and QML class Vin 2023.

Table 8: RT PolarFire Radiation Characteristics

Totallonizing Dose

(TID) 100kRAD
. . Absent
Configuration Upsets Tested to >80 MeV-cm2/mg
LETr1 80 MeV-cm2/mg

Single BventLatch-Up | |4y pi0 operatingat1.8V

Single Event Upsets 1E-7 errors/bit-day,

(Unprotected DFF) GEO SolarMin
Single Event Upsets 1E-11 errors/bit-day,
(DFF With Local TMR) GEO SolarMin
On-Orbit Supported

Reprogramming 500 cycles max.

RT PolarFire FPGA RTPF500T
DFF (TMR) 0
DFF (Non-TMR) 481K
4-Input Look-Up Tables (LUTS) 481K
Mathblocks (18x18 MACC) 1,480
TotalRAM 33 Mbits
uPROM 513 Kbits
Serdes Transceivers 24
(250 Mbps—10 Gbps)
1/0 584
(HSIO/GPIO) (324/260)
. . Supported
On-Orbit Reprogramming 500 cycles max.
1509 Ceramic
Package ColumnGrid Array
Mil Std 883
Qualification (Planned) QML ClassQ
QML ClassV

In total ionizing dose radiation effects testing, RT
PolarFire FPGAs haveshownminimal degradation in
performanceat100kRAD,andanincreasein leakage
current of 10%to 15%. Single eventeffects (SEE) have
been measured in proton and heavy ion radiation.
Radiation test results are summarized in Table 8.
Additional radiation testing is planned in 2021 and
2022.

13. CONCLUSION

The VectorBlox Accelerator SDK and CoreVectorBlox
IP provide aneasy-to-use and flexible way to
implement neural networks on power-efficient RT
PolarFire FPGAs. The overlayarchitecture allows for
iteration onand changing of neural networks without
resynthesizing FPGA designs, including dynamically
changing networks at runtime. The coreuses standard
AXIl interfaces making it easy to addto existing
designs. The VectorBlox Accelerator SDK can take in
user networks from a variety of network frameworks
and guantize to 8-bit integer math with very little loss in
accuracy. Together,the VectorBlox Al Solution and
RT PolarFire FPGAs enable users to implement low-
power machine learningandartificial intelligence
solutions in space-flight instruments, overcoming
difficult powerandthermal constraints.

14. REFERENCES

[1] Microchip web site, VectorBlox page
https://www.microchip.com/en-
us/products/fpgas-and-plds/fpga-design-
resources

[2] Microchip web site, RT PolarFire page
https://www.microchip.com/en-
us/products/fpgas-and-plds/fpgas/polarfire-
fpaas



https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-design-resources
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-design-resources
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-design-resources
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas

