Using the VectorBlox[™] SDK to Create Programmable AI/ML Applications in RT PolarFire[®] FPGAs

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Presented at European Space Agency On-Board Data Processing Workshop Ken O'Neill Aaron Severance Diptesh Nandi June 15, 2021

AI/ML in Space

Background

- Satellite operators demanding more information from space assets
- Sensor resolution increasing faster than available downlink bandwidth
- Faster frame rates, more channels in multi-spectral imaging

• Artificial Intelligence and Machine Learning (AI/ML) allows new operating models

- Permits more elaborate processing of data on orbit
- Allows transmission of processed information, instead of raw data
- Enables autonomous decision-making on orbit use, discard, prioritize

AI/ML Implementation: Neural Network Training and Inferencing

- Training is performed on the ground with large data sets
 - Unconstrained compute resources, no power limitations
- Inferencing is performed in the space-flight application
 - Limitations on computing throughput, power and thermal constraints

Traditional FPGA Design Flow Challenges

VectorBlox[™] Software Development Kit and IP

VectorBlox SDK and NN IP enables:

- Software developers to run Neural Networks (NN) without prior FPGA knowledge
- Utilization of most popular NN software frameworks
- Simulation in software without procuring hardware

CoreVectorBlox Neural Network Engine

Multi-core Software Architecture

Mi-V runs complete software-based application

VectorBlox Matrix Processor (MXP)

- Elementwise tensor operations

 (add, sub, xor, shift, mul, dotprod ...)
- Up to 8 32-bit ALUs
- Mixing precisions ok (int8, int16, int32)
- 256 KB scratchpad memory and DMA controller

VectorBlox CNN

- Tensor multiply-accumulate operations
- Fixed at either int8 precision
- Layer enhancements added with software update

Overlay implementation allows several different networks to run on the same FPGA design without the need to resynthesize

CoreVectorBlox IP

Configuration	Vector Processor Width	Vector Scratchpad	CNN Accelerator Array Size
V250	128-bit	64kB	16x16
V500	256-bit	128kB	16x32
V1000	256-bit	256kB	32x32

Control Registers

• Control, Status and Error signaling

Microcontroller

- Parses network structures from BLOBs
- Controls MXP Vector Processor
- MXP Vector Processor
 - Processes general neural network layers and offloads convolution layers to CNN Accelerator
- CNN Accelerator
 - Processes convolution network layers

VectorBlox™ 8-bit Accuracy

Input Framework	Madal	Accuracy					
	Wodel	Simple 8-bit	VectorBlox SDK 8-bit	Floating-point 32-bit			
Caffe	Squeezenet 1.1	58.8	58.6	59.2			
TensorFlow	Mobilenet v1	68.8	71.2	71.6			
TensorFlow	Mobilenet v2	69.0	71.6	72.0			
ONNX	Resnet18 v1	71.4	72.8	72.8			
PyTorch	Resnet50	75.2	75.0	75.0			
Darknet	TinyYOLO v2 VOC	54.2	54.4	55.1			
Darknet	TinyYOLO v3 COCO	39.5	40.4	40.9			

VectorBlox™ Performance and Utilization

Without TMR – default implementation

Configuration	Size (no TMR)			fmax	fmax (base) Peak		Performance (FPS)	
	kLUTs	MPF500T	RTPF500T	(base) MHz	GOPs	mw/GOP	Mobilenet-v1	TinyYOLO-v3
V250	28	6%	6%	154	79	7.0	26.2	9.1
V500	48	10%	10%	143	146	6.4	47.7	16.6
V1000	63	13%	13%	136	279	5.1	68.0	26.5

With TMR – synthesized local TMR, preliminary results

Configuration	Size (synthesized local TMR)			fmax (base) Peak		Performance (FPS)			
	kLUTs	kDFF	MPF500T	RTPF500T	(base) MHz	GOPs	mw/GOP	Mobilenet- v1	TinyYOLO- v3
V250	56	66	14%	14%	102	52	-	17.4	6.0
V500	97	116	24%	24%	86	88	-	28.7	10.0
V1000	136	161	33%	33%	76	156	-	38.0	14.8

2-3x More Power Efficient Inferencing

Core Name	Peak GOPs	Dynamic Power (mW)	Static Power* (mW)	Total Power (mW)	Total Power (mW/GOP)
VectorBlox™ V1000	279	1094	206	1300	5.1
VectorBlox V500	146	698	127	825	6.4
VectorBlox V250	79	387	65	452	7.1
Competitor A Core 1	332.8	3072	976	4048	12.2
Competitor A Core 2	166.4	2201	528	2729	16.4

4500 350 **—** 333 4000 279 300 Total Power Consumption (mW) 6 3500 250 3000 GOPs 200 2500 • 166 2000 **~** 146 150 1500 100 1000 50 500 0 0 Comp A Core 1 Comp A Core 2 **VBX V1000** VBX V500 **VBX V250** Static Dynamic GOPs

Total Power Consumption

- 50% to 70% power saving for similar inferencing performance
- Higher inferencing performance in applications with power constraints

*Scaled for resource utilization

RT PolarFire® FPGA

RT PolarFire FPGAs

- High density, high performance
- Absence of configuration upsets
- Lowest power consumption in class
- Path to QML qualification

- 481K logic elements
- 33 Mbits SRAM
- 1,480 multipliers
- 24 x 10 Gb/sec serdes

RT PolarFire FPGA Schedule:

- Engineering models available now
- Mil Std 883 B expected in early 2022
- QML class Q expected in early 2022
- QML class V expected in 2023

Available Today:

- RT PolarFire FPGA engineering models
- Commercial MPF300 evaluation kit
- Synthesis support for TMR
- Power calculator

RT PolarFire® FPGA Radiation Summary

- Robust TID, 100 krad
- No configuration upsets
 - LET 80 MeV-cm²/mg, fluence more than 5E8 ions/cm²
- SEL in GPIO cells
 - LET_{TH} 80 MeV-cm²/mg
- SEFI in reset circuit
 - 1 in 40 years, in GEO solar min
- SEU in flip-flops
 - Unprotected upset rate ~ 1E-7 errors/bit-day, GEO solar min
 - TMR with constrained placement ~ 1E-11 errors/bit-day, GEO solar min
- Reprogramming on orbit
 - Reprogramming on orbit is supported heavy ion and proton test data is available
- Next tests:
 - Clock networks, PLL, SERDES, SRAM with EDAC, Mathblocks, SET, . . .

Summary and Conclusion

- VectorBlox[™] Accelerator SDK creates efficient networks for FPGA deployment
 - Optimization and conversion to 8-bit models with minimal loss of accuracy
 - Bit-accurate simulation environment allows evaluation before programming
- CoreVectorBlox IP creates flexible, power-efficient neural networks on PolarFire and RT PolarFire FPGAs
 - Update and modify networks without changing the FPGA design
 - Networks can be designed and modified by engineers with no FPGA experience

• RT PolarFire[®] allows greater inferencing performance in space

- Higher GOPS/mW in power-constrained space applications
- Radiation effects suitable for LEO, GEO and deep space

Q & A

