OBDP Workshop, 14-17 June 2021

Systematic Evaluation of the European NG-LARGE FPGA & EDA Tools for On-Board Processing

<u>V. Leon</u>	R. Domingo	D. Merodio Codinachs
I. Stamoulias	M. Verdugo	I. Conway
G. Lentaris	D. Gonzalez-Arjona	

D. Soudris

NTUA, Greece

GMV, Spain

ESA-ESTEC, Netherlands

1. Introduction

2. Evaluation Methodology

3. Evaluation Results

4. Conclusion and Future Work

INTRODUCTION

On-Board Data Processing

 \odot applications \rightarrow increased computational & I/O demands, multiple algorithms, ...

 \odot platforms \rightarrow reliability, re-programmability, low-power, fast I/O, ...

Embedded Platforms

 \odot space-grade CPUs \rightarrow never reach "very high-performance"

 \odot space-grade FPGAs \rightarrow limited pool, even smaller for European high-density chips

○ high-density EU space-grade FPGAs → NanoXplore BRAVE FPGAs

NG-LARGE FPGA

 \odot 2nd European high-density FPGA \rightarrow successor of NG-MEDIUM

 \odot to be used in ESA missions ightarrow Navigation, Exploration, ...

 \odot <u>competitive</u> \rightarrow radiation-hardness, resources, reconfiguration

INTRODUCTION

VASILEIOS LEOI

NG-LARGE Features

- SRAM-based, 65nm, rad-hard by design
- \odot logic/arithmetic \rightarrow 137K LUTs, 32K CYs, 384 DSPs
- \odot memory/register \rightarrow 129K DFFs, 192 RAMBs
- \bigcirc <u>I/O</u> \rightarrow SpaceWire @400Mbps (also for configuration)

"QUEENS2" ESA Activity

- "QUality Evaluation of European New SW for BRAVE II"
 - assessment of the <u>SW programming tool</u> (NXmap)

LUT6

10099

10108

10093

intensive DSP benchmarking on the <u>HW chip</u> (NG-LARGE)

DFF

7386

7388

7411

irtex-50V xar5vfx130) with SIFT Descr benchmark

DSP25x18

32

32

32

RAM

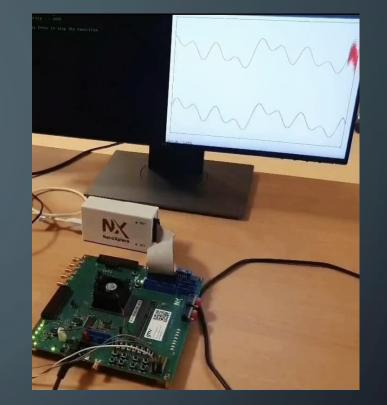
Kbits 612

1116

2304

4320

NG-Large (BRAVE)


RAMB36

17

31

64

120

based on our evaluation methodology!

	c4	10248	7416	32	
			•		
N. NATIONAL TECHNICAL UN	NIVERSITY	OF ATH	ENS		

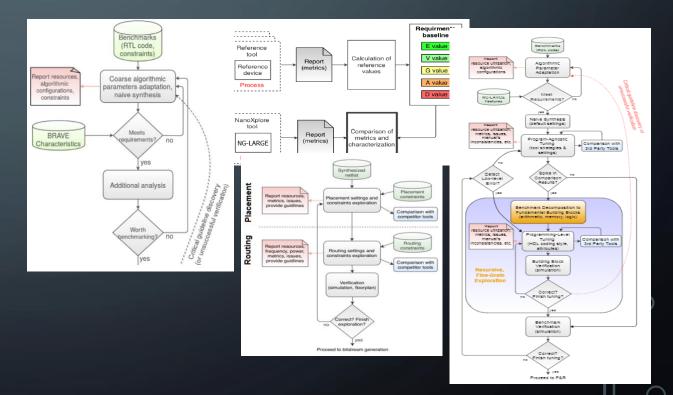
Config.

c1

c2

c3

OBDP2021

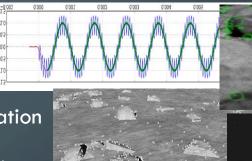

PROPOSED EVALUATION METHODOLOGY

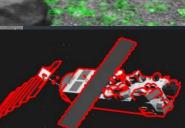
Systematic Assessment Approach

- enhanced vs QUEENS1 activity (NG-MEDIUM evaluation)
- involves feedback loops
- \odot performs comparisons vs. state-of-the-art tools/devices \rightarrow COTS & space-grade FPGAs

Methodology Steps

- 1. selection of benchmarks
- 2. definition of rating method
- 3. assessment of synthesis
- 4. assessment of placement & routing
- 5. assessment of bitstream generation


STEPS 1-2: BENCHMARKS AND RATING METHOD


Benchmark Selection

 \odot goal \rightarrow stress the tool/device with diverse algorithms (computations, I/O, resources, etc.)

○ <u>categories</u>:

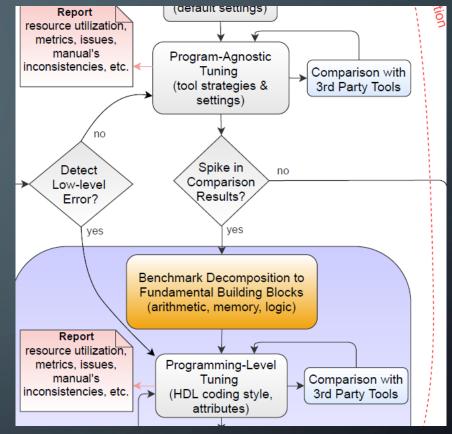
- DC1: low-complexity \rightarrow FSM, RAM, MULT, ADD
- DC2: medium-complexity \rightarrow LEON3, VGA controller
- DC3: high-performance DSP \rightarrow image processing, navigation
- \odot <u>selection criteria</u> \rightarrow scalability, diversity, throughput, etc.

Rating Method

- \odot <u>goal</u> \rightarrow define the evaluation process and comparison to 3rd party tools
- \odot metrics \rightarrow resource utilization, frequency, power, tool runtime, etc.
- \odot <u>reference value</u> \rightarrow average of all the 3rd party results

STEP 3: ASSESSMENT OF SYNTHESIS

Assessment Targets


- NXmap settings (strategies and synthesis options)
- mapping efficiency
- quality of results (resources, correctness)
- quality of NXmap reports

Testing in 2 Stages

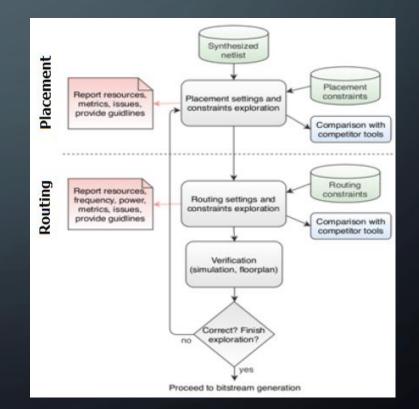
- 1. program-agnostic tuning \rightarrow tool settings
- 2. <u>programming-level tuning</u> \rightarrow HDL coding

Assessment Mechanisms

- \odot <u>report records</u> \rightarrow systematic comparison with 3rd party tools
- \odot <u>functional verification</u> \rightarrow post-synthesis netlist <u>simulation</u>
- $_{\odot}$ issues resolving ightarrow benchmark decomposition to small blocks + feedback loop

STEPS 4-5: ASSESSMENT OF P&R AND BITSTREAM

Placement & Routing


- exploration of physical constraints & place/route settings
- assessment of STA, power consumption, reports
- \odot <u>functional & timing verification</u> \rightarrow post-P&R netlist simulation

Bitstream Generation

- \odot configuration interfaces & speed
- reconfiguration tests
- bitstream validation

HW Verification

○ comparison to ground-truth data

EVALUATION RESULTS (1/2)

Implementation of High-Performance Benchmarks

- <u>benchmarks</u> → FIR, Harris, Canny, Disparity, SpaceSweep
- <u>SW tool</u> → NXmap3 v.2020.3 (also tested v.2.9.6, v.2.9.7, v.3.0.9, v.2020.1)

Resource Utilization

- competitive vs 3rd party tools (compare absolute numbers)

 - LUT \rightarrow good (-6% for Harris, -57% for Disparity, +48% for Canny)
 - DFF \rightarrow good (-2% for Harris, -5% for SpaceSweep, +46% for Canny)
- significant improvement vs QUEENS1
 - NXmap3 \rightarrow more mature vs earlier versions (NXmap2)

FIR

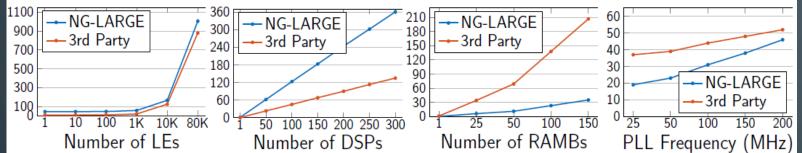
Harris

Canny

Disparity

80

101 60


1751

2.669

1563

Evaluation Results (2/2)

Power Consumption

worse w.r.t. LE/DSP (5x-1.5x)
better w.r.t. RAMB/PLL (up to 6x)
similar static power (diff. 0.08W)

Performance

	Frequency (MHz)	Runtime (s)	Throughput (*)
FIR	214	continuous	214 MSPS
Harris	40	0.19 / frame	5.3 FPS
Canny	38	0.10 / frame	10 FPS
Disparity	50	6.7 / frame	18 MPDS
SpaceSweep	52	10.8 / frame	29 MPDS

- O Disparity/SpaceSweep (1024x1024)
 - improve depth extraction by 1 order
- Harris/Canny (1024x1024)
 - sufficient: VBN \rightarrow 1-10 FPS
- O Frequency Improvement vs Nxmap2

SYSTEM-LEVEL EVALUATION: "SPARTAN VBN2"

Implementation of Entire VBN System (I/O + Processing, past ESA activity)

- algorithms on HW → Harris Corner Detector + SIFT Descriptor/Matching
- \odot <u>architecture</u> \rightarrow GR740 (processor) + NG-LARGE (accelerator)
- \bigcirc <u>I/O</u> \rightarrow SpaceWire @100Mbps for 512x512 stereo pair + HW output

Comparative Evaluation

	LE	LUT	DFF	DSP	RAMB	MHz	
NG-LARGE			56296		113	22	
	(76%)	(71%)	(44%)	(65%)	(58%)		
3rd Party	14894	50427	39008	129	228	30	
	(73%)	(62%)	(48%)	(40%)	(77%)	30	

				Total System		
	\mathbf{Time}^1	\mathbf{Time}^1	\mathbf{Time}^1	Time ²	Throughput ²	
NG-LARGE	208ms	395ms	28ms	1251ms	0.8 FPS	
3rd Party	104ms	196ms	28ms	624ms	1.6 FPS	
$\frac{1}{2}$ refers to one 512×512 image.						

² refers to a localization step with one 512×512 stereo pair.

○ results vs competitor

- LE, LUT, DFF \rightarrow 6.5x, 2x, 1.4x more (due to LE & LUT architecture)
- DSP \rightarrow 2x more (due to design choices)
- RAMB \rightarrow 2x less (due to bigger RAMB size)
- Max MHz \rightarrow > 2x less (improving among Nxmap versions)
- system throughput \rightarrow 2x less FPS

VASILEIOS LEON, NATIONAL TECHNICAL UNIVERSITY OF ATHENS

o fully functional, correct execution!

CONCLUSION AND FUTURE WORK

\Box NG-LARGE \rightarrow Promising Space-Grade Solution

- O <u>successful</u> HW execution of high-performance benchmarks
- O <u>competitive</u> resource utilization and power consumption
- <u>sufficient</u> SW tool capabilities
- <u>improving</u> throughput (already good for space applications)

Evaluation of NG-ULTRA ("QUEENS3")

- assessment of SoC's embedded processor
- implementation of new benchmarks (e.g., telecom)

Implementation of New VBN Pipelines & Al Algorithms

- custom designs on BRAVE FPGAs
- \odot I/O via SpaceWire

Thank you! Questions?

Vasileios Leon, NTUA, Greece

"QUEENS2"

<u>vleon@microlab.ntua.gr</u>

ESA, 4000128041/19/NL/AR/va