

EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESING (OBDP2021), 14-17 JUNE 2021

EVALUATION OF NEW GENERATION RAD-HARD MANY-CORE ARC HITECTURE
FOR SATELLITE PAYLOAD APPLICATIONS

Patricia López Cueva(1), Remi Barrère(2), Kevin Eyssartier(3), Mickaël Bruno(4), Clement Coggiola(5)

(1)Thales Alenia Space, France, Email:patricia.lopezcueva@thalesaleniaspace.com
(2)Thales Research and Technology, France, Email: remi.barrere@thalesgroup.com

(3)Thales Research and Technology, France, Email: kevin.eyssartier@thalesgroup.com
(4)CNES – French Space Agency, France, Email: mickael.bruno@cnes.fr

(5)CNES – French Space Agency, France, Email: clement.coggiola@cnes.fr

ABSTRACT

Computing power requirements of space applications, in
particular for payload functions, are constantly rising
with the objective of achieving higher spatial, spectral,
temporal and radiometric resolution. RC64 is a many-
DSP rad-hard processor that offers processing
performance close to FPGAs or specialised ASIC but
with the flexibility of software programming and low
power consumption.
This paper presents the results of a CNES study aimed
at evaluating RC64 component for satellite payload
applications by using as an example an implementation
of the CCSDS 123.0-B-2 “Low-Complexity Lossless
and Near-Lossless Multispectral and Hyperspectral
Image Compression” standard [4].

1. INTRODUCTION

Space applications, more specifically payload functions,
are requiring increasing amount of computing power,
the aim being to increase the number of processing
operations that can be carried out on board to achieve
higher spatial, spectral, temporal and radiometric
resolution. Moreover, next generation projects are
seeking a breakthrough by embedding innovative
processing designs to gain efficiency, flexibility and
autonomy, putting more emphasis on the necessity to
have powerful processing components, and being usable
for deep space missions.

Indeed, COTS components that provide the necessary
performance while being tolerant to radiation are today
available for missions with low to medium requirements
on radiation tolerance, such as Kalray's MPPA®
Coolidge™ or Xilinx ACAP Versal. However, these
components are not suitable for deep space missions.
On the other hand, very few radiation-hardened
components exist today that offer the needed
performance. The RC64 is a good example of this kind
of components.

The RC64 component from Ramon.Space is a many-
core radiation-hardened processor, built around DSPs
[1], and designed for spatial applications requiring high
computing power and very high speed processing [2][3].
This component has a massively parallel architecture
that offers processing performances close to FPGAs or
specialised ASICs, but also provides the flexibility of
software programming and low power consumption.
However, its architecture requires rethinking the
algorithms in order to make the most of the RC64
capabilities.

Last few years, CNES has been working on the
evaluation of this component for different space
applications. As part of this effort, a new study was
launched to evaluate the suitability of using the RC64
component with high complex algorithms.

For this study, the selected algorithm is the CCSDS
123.0-B-2 standard, which introduces, among other new
features, near-lossless compression. However, the
difficulty is that this standard has been designed in a
sequential way, which means that the execution model
has to be changed to parallel: this is a required step
before any attempt at efficient implementation on a
many-core.

2. RC64 ARCHITECTURE AND

PROGRAMMING MODEL

RC64 is composed of 64 DSP CEVA-X1643 cores [1]
that share a 4MB memory as shown in Figure 1. Each
core has also a private 8KB DTCM memory, as well as
8KB instruction and data caches.

Its programming model is task oriented with the
particularity of depending on a hardware scheduler for
the execution of the defined tasks. In order to program
the RC64, the developer defines a series of small
sequential tasks and a dependency graph that describes
the dependencies between the tasks. This approach

seeks to provide a simpler and more effective way of
programming a massively parallel architecture such as
the RC64.

Figure 1 : RC64 Architecture

Concerning inputs/outputs, RC64 offers SpaceWire
(SpW) and SpaceFibre (SpFi) interfaces to connect the
RC64 with other systems. Moreover, it contains a DDR
memory necessary to store large data buffers due to the
limited amount of shared memory. All accesses to
external interfaces and DDR are managed by DMA
requests to transfer data to/from shared memory, as
internal processors have no direct access to DDR.

3. CCSDS 123.0-B-2 ARCHITECTURE

The CCSDS 123.0-B-2 low-complexity lossless and
near-lossless multispectral and hyperspectral image
compression is a data compressor for spatial imagers.

The compressor is composed of two layers: predictor
and encoder (see Figure 2). The predictor estimates the
value of current image sample based on the values of
nearby samples in a small three-dimensional
neighbourhood, and then sends to the entropy coder the
quantized residual difference between the estimated
value and the current sample value projected on a
positive interval. The encoder then encodes the mapped
quantizer indices δz(t) in order to limit the size of the
compressed image.

Figure 2 : Compressor Architecture

The input of the compressor is a three-dimensional
image composed of an array of integer values. This
array is composed of sz,y,x samples organised in Nx
columns, Ny lines and Nz bands. The compressed output
is an encoded bitstream from which the input can be
reconstructed, exactly or approximately. This optional
loss of information takes place in the quantizer.

4. CCSDS 123.0-B-2 PARALLELISATION

STUDY

The prediction calculation of ŝz(t) is performed using
previously computed nearby sample representatives in
the current band and the P preceding spectral bands.
The user-specified parameter P is an integer in the range
[0; 15], which determines the number of bands used for
prediction. This parameter is important for memory and
computation usage on the RC64, as it requires to store
previously computed s”(t) of the P previous bands and
the bands to be computed in order.

The algorithm can be configured in four different types
of neighbourhood: neighbour-oriented mode uses
sample representative values from the lateral columns
whereas the column-oriented mode is only using the
current column, wide mode uses sample representative
values from the current line whereas the narrow mode
only uses values from previous line. This spatial
dependency requires that the lines in the same band
shall be computed in order.

In this study, we propose three parallelisation methods,
which could be applicable for any parallel architecture:
sub-image splitting, sequential parallelisation and
interleaved parallelisation. The sub-image splitting
consists in splitting the input in multiple samples which
can be compressed in parallel, which eliminates inter
sample dependencies. The sequential parallelisation
splits the compute load into bands; each thread can
process a band if the current line has been computed in
the P previous bands. The interleaved parallelisation
splits the compute load into lines and each thread
advances through bands. These last two parallelisation
modes require synchronisation points at the end of each
line.

5. BENCHMARK RESULTS

To better anticipate our implementation choices, the
RC64 is first benchmarked, the aim being to determine
the best practices and make the best of this platform.
The DDR bandwidth, computation speed and hardware
scheduler are evaluated to this end.

Table 1: DDR performance in MB/s
Buffer size in bytes 4k 64k 128k 256k

 CDA1 3G 12G 3G 12G 3G 12G 3G 12G
Core

frequency Rx/Tx

40Mhz Tx 24 - 210 - 280 - 338 -
Rx 25 - 210 - 280 - 336 -

137Mhz Tx 72 89 298 714 333 955 353 1159
Rx 72 84 297 717 332 957 353 1151

1 DMA Arbitration Configuration

DDR performance is measured by transferring buffers
of different sizes in different configurations. The
measured time includes all overheads, from the DMA
call to the callback entry point (activated when the
DMA transfer finishes). The results, presented in Table
1 show a much better performance when using large
buffers instead of small buffers, in the order of fifteen
time faster, which indicates that it is more efficient to
use large buffers in the implementation when possible.

Computation benchmark compares convolution time
between 16bits, 32bits and 64bits inputs. DSP
optimisation through intrinsics is also measured. On
average, 32bits and 64bits computations are 2.3 and 9.3
times slower respectively than 16bits computations, and
the use of intrinsics –limited to 16bits - gives a speedup
of 2.7.

The efficiency of the hardware scheduler is measured
considering software events, regular task terminations
and duplicable task terminations. The software event is
an API call that might trigger the activation of a task
and it takes on average 227 cycles between the API call
and the activation of the task. Regular task termination
is the scheduling event triggered by the return of a task
and it takes on average 189 cycles to be performed. The
duplicable task termination is the scheduling event
triggered when all the duplicated tasks return, and it
takes on average 462 cycles to synchronise the cores
and to activate the next task. These low values confirm
that the parallelisation is possible despite its many
required synchronisation barriers.

6. CCSDS 123.0-B-2 IMPLEMENTATION ON

RC64

In order to minimise data dependencies and so to allow
a better efficiency, the selected algorithm is
implemented with the following limitations: only wide
sum mode, only sample adaptive coder, only sequential
order mode.

Figure 3 : Test Setup

Figure 3 shows the test set-up where the RC64 card is
installed on a VPX rack and accessed via JTAG from
the Host PC. Moreover, the Host PC is connected to the
card via SpW to be able to have console output on the
Host PC and exchange data files with RC64.

Figure 4 shows the activity diagram of the algorithm
once ported to RC64 platform. All files are transmitted
between the host PC and the RC64 DDR via SpW.
Then, only data corresponding to bands that can be
processed is loaded from DDR to shared memory via
DMA. The prediction and encoding of samples of the
loaded bands is then parallelised. Once a band has been
treated, it can be stored in DDR memory and this write
operation is done in parallel to sample treatment of
other bands as an optimisation.

The encoded bands are not written in memory in a
sequential way and it is impossible to predict the size of
an encoded band in advance. Therefore, all bands are
written in DDR memory leaving enough space so that
no data of other bands is overwritten.

Once all bands are processed, the unnecessary padding
introduced during the parallel loop is then removed in
order to obtain the final compressed image file.

Figure 4 : Activity Diagram of CCSDS 123.0-B-2

algorithm

6.1. Possible Optimisations

During the parallelisation study and the implementation
on target, several optimisations have been identified that
could improve the performance of the current
implementation. The identified optimisations have not
all been implemented yet due to lack of time and budget
on the current study.

Input double buffering
The goal of double buffering is to hide memory transfer
time behind computation time. This is achieved by
loading the next required inputs during the current
inputs computations. This could bring an important
gain, especially when the load image step takes a
substantial proportion of the time, as is the case with
AIRS image when using 32 or 63 threads due to the low
number of lines on each band. On the other hand, this
technique raises memory consumption by doubling
input buffers so a good balance needs to be found.

Modification of data width
Predictor internal registers have a resolution of R in the
range max{32,D+Ω+2} ≤ R ≤ 64 with D the resolution
of the input and Ω the resolution of the weight. This
ensures that no overflow occurs. The current
implementation uses the maximum range of R=64 in
order to stay compatible with all configurations. As the
benchmark in Section 5 shows that the resolution has a
significant impact on the computation performances,
lowering precision from 64 bits to 16 bits could
drastically reduce predictor latency, to the detriment of
the numerical stability. This use of a 16-bit precision
would also allow using intrinsic functions, which would
offer a much higher performance, up to double, on some
parts of the algorithm.

The drawback is that the algorithm precision needs to be
lowered in order to avoid overflows, which introduces a
quality impact on the image after decompression.

R also drives the precision of sample representatives
and can help saving internal memory used by the
predictor.

Partial line for each task
Currently, each duplicable task instance processes the
data of a full line, which limits the possible input size as
well as the number of cores that can be run in parallel.
This is due to the limited size of the shared memory,
which is the main drawback of RC64 architecture for
this algorithm.

By splitting data lines into multiple blocks, the global
memory usage can be lowered while still meeting the
data dependency requirements. Due to the fact that the
algorithm is parallelised in spectral bands, images with
low number of spectral bands could benefit of a higher
parallelism with this optimisation.

A disadvantage of this method is that it creates a
dependency between blocks that does not exist when
using full lines. It can be solved either by keeping this
data in memory, which generates more data dependency
and complexity, or by using the reduced prediction
mode and the column-oriented local sums, which would
need to be implemented.

Another drawback is the usage of smaller buffers for
DMA transfers to and from DDR. As shown in Section
5, the buffer size has a significant effect on the
bandwidth of the DDR: transferring small data set is
inefficient.

7. PERFORMANCE RESULTS

The characteristics of the AIRS sample are Nx=90,
Ny=135 and Nz=1501: the important number of bands
allows the full usage of the RC64 cores. Encoding is
parallelised onto 63 threads to free the last core for
memory transfers, synchronisation issues can be
observed otherwise. Different values of the parameter P,
which represents the number of spectral bands used for
the prediction, are used: a higher P implies a higher
computation intensity, a higher memory footprint during
the encoding step and a higher compression rate. The
AIRS sample has a size of 34MB of 16bits sequential
inputs. The compressed bitstream sizes are 14MB,
9.4MB, 9.1MB, 9.0MB and 9.0MB for P at 0, 1, 4, 8
and 15 respectively.

Using higher number of threads results in a drastic
improvement, mainly observed for the prediction and
encoding step. This speedup is proportional to the
number of threads: this confirms that the overheads in

the prediction/encoding steps are not significant, and
also that threads do not interfere with each other. The
parameter P has no impact on the speedup achieved
when using higher number of threads.

Figure 5 : Speedup Results on AIRS samples

Bandwidth measured during the loading image step is
between 3.2 and 4MB/s, much less than the best case
achieved in the benchmark in section 5, but load image
and consolidation stages latency becomes significant
only when using 63 threads. Thus, future performance
optimisations should address these two steps.

Figure 6 : Samples/s results on AIRS samples

Pleiades sample is of dimensions Nx=296, Ny=2448 and
Nz=4. Pleiades sample is only tested with P=0 because
of memory consumption: indeed, the Nx*Ny samples
needed for processing dependencies cannot fit in
internal shared memory for bigger values of P. In
addition, it is not possible to use more than four threads
with the implemented parallelisation, which means that
93% of the compute power of the RC64 is out of reach
because of the low number of bands Nz.

Figure 7 : Performance Results on Pleiades sample

As already noticed with the AIRS sample, a linear
speedup can be observed when there are no
interferences between threads. But the four threads
parallelisation cannot achieve the same level of
performance as with the AIRS sample: prediction and
encoding step can still bring significant gains on its
own. The interleaved parallelisation, proposed during
the parallelisation study, would allow a higher number
of threads in this case and should lead to a better
performance.

8. EVALUATION RESULTS

It is important to note that the implementation of the
CCSDS 123.0-B-2 standard on the RC64 platform was a
porting of an existing algorithm. This algorithm was
initially designed in a sequential way, with the main
objective of being fully compliant of the standard, i.e.
supporting all modes and data sizes. As already
presented, this approach is not the most effective way to
achieve good performances on a manycore such as
RC64.

Another point concerns the programming model of the
RC64, which is different from a typical threading
model: tasks are supposed to be much smaller than
typical threads, and scheduling and synchronisation
between tasks does not use the same mechanisms. This
new programming model is very interesting and is
intended to facilitate the user experience, but a learning
curve phase has to be considered when introducing this
platform on a system. As with any major change, using
this new programming model requires to redesign an
existing algorithm before porting it to the RC64.

On the other hand, the performance results show the
high potential of the RC64 for on-board data processing
algorithms. As an example, the speed-up and
performance obtained on the AIRS sample, with a
maximum speed-up of 58.35 and throughput of 0.45
Msamples/s, are significant, taking into account that
there is still room for further optimisations.

Nevertheless, we identified a few improvements,
although not mandatory, that could make the usage of
the RC64 platform more convenient to use.

First, a more detailed documentation explaining how to
program efficiently the RC64 would be of great value: if
the documentation provides main guidelines, some “tips
and tricks” could be very helpful.

Another important aspect to consider is the tracing
system: currently only software execution traces are
supported by the platform, which in some cases can be
intrusive. Hardware data and instruction traces would
allow a finer analysis and then a better understanding of
the application execution on the platform. Another point
related to the preceding one, access to the DDR via
JTAG probe would be of great help when debugging
applications. Otherwise, the user has to print the data
while reading or writing it into DDR via DMA transfers
and he never has a complete view of the memory
content at a given moment.

Last point, direct DMA transfers between I/Os (SpW,
SpFi) and DDR would allow to save shared memory for
the applications, as no deallocation of memory is
supported.

9. CONCLUSIONS

Regardless of the possible improvements mentioned in
the previous section, it is clear the interest of using the
RC64 platform for on-board data processing.

The performance that it offers is substantial and at a
level that is unseen anywhere until now in the area of
radiation-hardened platforms. It certainly opens the door
to increased on-board data processing capabilities of
deep space missions, with the consequent increase on
flexibility on the type and amount of applications that
could be embedded.

Even if this study has been focused on data
compression, other types of applications could benefit
from this high performance platform, such as image
processing or even artificial intelligence.

Regarding the CCSDS 123.0-B-2 standard, the
parallelisation of the algorithm has shown that the
reference implementation is too generic to be efficiently
implemented on-board while keeping good
performances on all possible modes.

For its implementation on a mission, a study of the
dimensions of the images to be processed, the needed
compression rate, and the resolution needs to be carried
out in order to be able to specialise the implementation
for the given mission.

REFERENCESS

[1] Gellis, H et al., “CEVA DSP processors for
MacSpace”, MacSpace Symposium and
Summer Seminar, 2016

[2] Ginosar R. et al., "RC64: High performance
rad-hard manycore", 2016 IEEE Aerospace
Conference, 2016

[3] Ginosar R et al., “RC64 Architecture”,
MacSpace Symposium and Summer Seminar,
2016

[4] Low-Complexity Lossless and Near-Lossless
Multispectral & Hyperspectral Data
Compression, Recommended Standards.
CCSDS-123.0-B-2. Blue Book, 2019

