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ABSTRACT  

Computing power requirements of space applications, in 
particular for payload functions, are constantly rising 
with the objective of achieving higher spatial, spectral, 
temporal and radiometric resolution. RC64 is a many-
DSP rad-hard processor that offers processing 
performance close to FPGAs or specialised ASIC but 
with the flexibility of software programming and low 
power consumption.  
This paper presents the results of a CNES study aimed 
at evaluating RC64 component for satellite payload 
applications by using as an example an implementation 
of the CCSDS 123.0-B-2 “Low-Complexity Lossless 
and Near-Lossless Multispectral and Hyperspectral 
Image Compression” standard [4]. 
 
1. INTRODUCTION 

Space applications, more specifically payload functions, 
are requiring increasing amount of computing power, 
the aim being to increase the number of processing 
operations that can be carried out on board to achieve 
higher spatial, spectral, temporal and radiometric 
resolution. Moreover, next generation projects are 
seeking a breakthrough by embedding innovative 
processing designs to gain efficiency, flexibility and 
autonomy, putting more emphasis on the necessity to 
have powerful processing components, and being usable 
for deep space missions. 
 
Indeed, COTS components that provide the necessary 
performance while being tolerant to radiation are today 
available for missions with low to medium requirements 
on radiation tolerance, such as Kalray's MPPA® 
Coolidge™ or Xilinx ACAP Versal. However, these 
components are not suitable for deep space missions. 
On the other hand, very few radiation-hardened 
components exist today that offer the needed 
performance. The RC64 is a good example of this kind 
of components. 
 

The RC64 component from Ramon.Space is a many-
core radiation-hardened processor, built around DSPs 
[1], and designed for spatial applications requiring high 
computing power and very high speed processing [2][3]. 
This component has a massively parallel architecture 
that offers processing performances close to FPGAs or 
specialised ASICs, but also provides the flexibility of 
software programming and low power consumption. 
However, its architecture requires rethinking the 
algorithms in order to make the most of the RC64 
capabilities.  
 
Last few years, CNES has been working on the 
evaluation of this component for different space 
applications. As part of this effort, a new study was 
launched to evaluate the suitability of using the RC64 
component with high complex algorithms.  
 
For this study, the selected algorithm is the CCSDS 
123.0-B-2 standard, which introduces, among other new 
features, near-lossless compression. However, the 
difficulty is that this standard has been designed in a 
sequential way, which means that the execution model 
has to be changed to parallel: this is a required step 
before any attempt at efficient implementation on a 
many-core.  
 
2. RC64 ARCHITECTURE AND 

PROGRAMMING MODEL 

RC64 is composed of 64 DSP CEVA-X1643 cores [1] 
that share a 4MB memory as shown in Figure 1. Each 
core has also a private 8KB DTCM memory, as well as 
8KB instruction and data caches.  
 
Its programming model is task oriented with the 
particularity of depending on a hardware scheduler for 
the execution of the defined tasks. In order to program 
the RC64, the developer defines a series of small 
sequential tasks and a dependency graph that describes 
the dependencies between the tasks. This approach 



 

seeks to provide a simpler and more effective way of 
programming a massively parallel architecture such as 
the RC64. 
 

 
Figure 1 : RC64 Architecture 

 
Concerning inputs/outputs, RC64 offers SpaceWire 
(SpW) and SpaceFibre (SpFi) interfaces to connect the 
RC64 with other systems. Moreover, it contains a DDR 
memory necessary to store large data buffers due to the 
limited amount of shared memory. All accesses to 
external interfaces and DDR are managed by DMA 
requests to transfer data to/from shared memory, as 
internal processors have no direct access to DDR. 
 
3. CCSDS 123.0-B-2  ARCHITECTURE 

The CCSDS 123.0-B-2 low-complexity lossless and 
near-lossless multispectral and hyperspectral image 
compression is a data compressor for spatial imagers.  
 
The compressor is composed of two layers: predictor 
and encoder (see Figure 2). The predictor estimates the 
value of current image sample based on the values of 
nearby samples in a small three-dimensional 
neighbourhood, and then sends to the entropy coder the 
quantized residual difference between the estimated 
value and the current sample value projected on a 
positive interval. The encoder then encodes the mapped 
quantizer indices δz(t) in order to limit the size of the 
compressed image. 
 

 
Figure 2 : Compressor Architecture 

The input of the compressor is a three-dimensional 
image composed of an array of integer values. This 
array is composed of sz,y,x samples organised in  Nx 
columns, Ny lines and Nz bands. The compressed output 
is an encoded bitstream from which the input can be 
reconstructed, exactly or approximately. This optional 
loss of information takes place in the quantizer. 
 
4. CCSDS 123.0-B-2  PARALLELISATION 

STUDY 

The prediction calculation of ŝz(t) is performed using 
previously computed nearby sample representatives in 
the current band and the P preceding spectral bands. 
The user-specified parameter P is an integer in the range 
[0; 15], which determines the number of bands used for 
prediction. This parameter is important for memory and 
computation usage on the RC64, as it requires to store 
previously computed s”(t) of the P previous bands and 
the bands to be computed in order. 
 
The algorithm can be configured in four different types 
of neighbourhood: neighbour-oriented mode uses 
sample representative values from the lateral columns 
whereas the column-oriented mode is only using the 
current column, wide mode uses sample representative 
values from the current line whereas the narrow mode 
only uses values from previous line. This spatial 
dependency requires that the lines in the same band 
shall be computed in order. 
 
In this study, we propose three parallelisation methods, 
which could be applicable for any parallel architecture: 
sub-image splitting, sequential parallelisation and 
interleaved parallelisation. The sub-image splitting 
consists in splitting the input in multiple samples which 
can be compressed in parallel, which eliminates inter 
sample dependencies. The sequential parallelisation 
splits the compute load into bands; each thread can 
process a band if the current line has been computed in 
the P previous bands. The interleaved parallelisation 
splits the compute load into lines and each thread 
advances through bands. These last two parallelisation 
modes require synchronisation points at the end of each 
line. 
 
5. BENCHMARK RESULTS 

To better anticipate our implementation choices, the 
RC64 is first benchmarked, the aim being to determine 
the best practices and make the best of this platform. 
The DDR bandwidth, computation speed and hardware 
scheduler are evaluated to this end. 
 



 

Table 1: DDR performance in MB/s 
Buffer size in bytes 4k 64k 128k 256k 

 CDA1 3G  12G 3G 12G 3G 12G 3G 12G 
Core 

frequency Rx/Tx 
        

40Mhz Tx 24 - 210 - 280 - 338 - 
Rx 25 - 210 - 280 - 336 - 

137Mhz Tx 72 89 298 714 333 955 353 1159 
Rx 72 84 297 717 332 957 353 1151 

 

                                                           
1 DMA Arbitration Configuration 

DDR performance is measured by transferring buffers 
of different sizes in different configurations. The 
measured time includes all overheads, from the DMA 
call to the callback entry point (activated when the 
DMA transfer finishes). The results, presented in Table 
1 show a much better performance when using large 
buffers instead of small buffers, in the order of fifteen 
time faster, which indicates that it is more efficient to 
use large buffers in the implementation when possible.  
 
Computation benchmark compares convolution time 
between 16bits, 32bits and 64bits inputs. DSP 
optimisation through intrinsics is also measured. On 
average, 32bits and 64bits computations are 2.3 and 9.3 
times slower respectively than 16bits computations, and 
the use of intrinsics –limited to 16bits - gives a speedup 
of 2.7.  
 
The efficiency of the hardware scheduler is measured 
considering software events, regular task terminations 
and duplicable task terminations. The software event is 
an API call that might trigger the activation of a task 
and it takes on average 227 cycles between the API call 
and the activation of the task. Regular task termination 
is the scheduling event triggered by the return of a task 
and it takes on average 189 cycles to be performed. The 
duplicable task termination is the scheduling event 
triggered when all the duplicated tasks return, and it 
takes on average 462 cycles to synchronise the cores 
and to activate the next task. These low values confirm 
that the parallelisation is possible despite its many 
required synchronisation barriers. 
 
6. CCSDS 123.0-B-2  IMPLEMENTATION ON 

RC64 

In order to minimise data dependencies and so to allow 
a better efficiency, the selected algorithm is 
implemented with the following limitations: only wide 
sum mode, only sample adaptive coder, only sequential 
order mode.  
 

 
Figure 3 : Test Setup 

 
Figure 3 shows the test set-up where the RC64 card is 
installed on a VPX rack and accessed via JTAG from 
the Host PC. Moreover, the Host PC is connected to the 
card via SpW to be able to have console output on the 
Host PC and exchange data files with RC64.  
 
Figure 4 shows the activity diagram of the algorithm 
once ported to RC64 platform. All files are transmitted 
between the host PC and the RC64 DDR via SpW. 
Then, only data corresponding to bands that can be 
processed is loaded from DDR to shared memory via 
DMA. The prediction and encoding of samples of the 
loaded bands is then parallelised. Once a band has been 
treated, it can be stored in DDR memory and this write 
operation is done in parallel to sample treatment of 
other bands as an optimisation. 
 
The encoded bands are not written in memory in a 
sequential way and it is impossible to predict the size of 
an encoded band in advance. Therefore, all bands are 
written in DDR memory leaving enough space so that 
no data of other bands is overwritten. 
 
Once all bands are processed, the unnecessary padding 
introduced during the parallel loop is then removed in 
order to obtain the final compressed image file.   
 



 

 
Figure 4 : Activity Diagram of CCSDS 123.0-B-2 

algorithm 
 

6.1. Possible Optimisations 

During the parallelisation study and the implementation 
on target, several optimisations have been identified that 
could improve the performance of the current 
implementation. The identified optimisations have not 
all been implemented yet due to lack of time and budget 
on the current study.  
 
Input double buffering 
The goal of double buffering is to hide memory transfer 
time behind computation time. This is achieved by 
loading the next required inputs during the current 
inputs computations. This could bring an important 
gain, especially when the load image step takes a 
substantial proportion of the time, as is the case with 
AIRS image when using 32 or 63 threads due to the low 
number of lines on each band. On the other hand, this 
technique raises memory consumption by doubling 
input buffers so a good balance needs to be found.  
 
Modification of data width 
Predictor internal registers have a resolution of R in the 
range max{32,D+Ω+2} ≤ R ≤ 64 with D the resolution 
of the input and Ω the resolution of the weight. This 
ensures that no overflow occurs. The current 
implementation uses the maximum range of R=64 in 
order to stay compatible with all configurations. As the 
benchmark in Section 5 shows that the resolution has a 
significant impact on the computation performances, 
lowering precision from 64 bits to 16 bits could 
drastically reduce predictor latency, to the detriment of 
the numerical stability. This use of a 16-bit precision 
would also allow using intrinsic functions, which would 
offer a much higher performance, up to double, on some 
parts of the algorithm.  

The drawback is that the algorithm precision needs to be 
lowered in order to avoid overflows, which introduces a 
quality impact on the image after decompression. 
 
R also drives the precision of sample representatives 
and can help saving internal memory used by the 
predictor. 
 
Partial line for each task 
Currently, each duplicable task instance processes the 
data of a full line, which limits the possible input size as 
well as the number of cores that can be run in parallel. 
This is due to the limited size of the shared memory, 
which is the main drawback of RC64 architecture for 
this algorithm.  
 
By splitting data lines into multiple blocks, the global 
memory usage can be lowered while still meeting the 
data dependency requirements. Due to the fact that the 
algorithm is parallelised in spectral bands, images with 
low number of spectral bands could benefit of a higher 
parallelism with this optimisation. 
 
A disadvantage of this method is that it creates a 
dependency between blocks that does not exist when 
using full lines. It can be solved either by keeping this 
data in memory, which generates more data dependency 
and complexity, or by using the reduced prediction 
mode and the column-oriented local sums, which would 
need to be implemented. 
 
Another drawback is the usage of smaller buffers for 
DMA transfers to and from DDR. As shown in Section 
5, the buffer size has a significant effect on the 
bandwidth of the DDR: transferring small data set is 
inefficient.  
 
7. PERFORMANCE RESULTS 

The characteristics of the AIRS sample are Nx=90, 
Ny=135 and Nz=1501: the important number of bands 
allows the full usage of the RC64 cores. Encoding is 
parallelised onto 63 threads to free the last core for 
memory transfers, synchronisation issues can be 
observed otherwise. Different values of the parameter P, 
which represents the number of spectral bands used for 
the prediction, are used: a higher P implies a higher 
computation intensity, a higher memory footprint during 
the encoding step and a higher compression rate. The 
AIRS sample has a size of 34MB of 16bits sequential 
inputs. The compressed bitstream sizes are 14MB, 
9.4MB, 9.1MB, 9.0MB and 9.0MB for P at 0, 1, 4, 8 
and 15 respectively.  
 
Using higher number of threads results in a drastic 
improvement, mainly observed for the prediction and 
encoding step. This speedup is proportional to the 
number of threads: this confirms that the overheads in 



 

the prediction/encoding steps are not significant, and 
also that threads do not interfere with each other. The 
parameter P has no impact on the speedup achieved 
when using higher number of threads. 
 

 
Figure 5 : Speedup Results on AIRS samples 

 
Bandwidth measured during the loading image step is 
between 3.2 and 4MB/s, much less than the best case 
achieved in the benchmark in section 5, but load image 
and consolidation stages latency becomes significant 
only when using 63 threads. Thus, future performance 
optimisations should address these two steps.  
 

 
Figure 6 : Samples/s results on AIRS samples 

 
Pleiades sample is of dimensions Nx=296, Ny=2448 and 
Nz=4. Pleiades sample is only tested with P=0 because 
of memory consumption: indeed, the Nx*Ny samples 
needed for processing dependencies cannot fit in 
internal shared memory for bigger values of P. In 
addition, it is not possible to use more than four threads 
with the implemented parallelisation, which means that 
93% of the compute power of the RC64 is out of reach 
because of the low number of bands Nz.  
 

 
Figure 7 : Performance Results on Pleiades sample 

 
As already noticed with the AIRS sample, a linear 
speedup can be observed when there are no 
interferences between threads. But the four threads 
parallelisation cannot achieve the same level of 
performance as with the AIRS sample: prediction and 
encoding step can still bring significant gains on its 
own. The interleaved parallelisation, proposed during 
the parallelisation study, would allow a higher number 
of threads in this case and should lead to a better 
performance. 
 
8. EVALUATION RESULTS 

It is important to note that the implementation of the 
CCSDS 123.0-B-2 standard on the RC64 platform was a 
porting of an existing algorithm. This algorithm was 
initially designed in a sequential way, with the main 
objective of being fully compliant of the standard, i.e. 
supporting all modes and data sizes. As already 
presented, this approach is not the most effective way to 
achieve good performances on a manycore such as 
RC64.  
 
Another point concerns the programming model of the 
RC64, which is different from a typical threading 
model: tasks are supposed to be much smaller than 
typical threads, and scheduling and synchronisation 
between tasks does not use the same mechanisms. This 
new programming model is very interesting and is 
intended to facilitate the user experience, but a learning 
curve phase has to be considered when introducing this 
platform on a system. As with any major change, using 
this new programming model requires to redesign an 
existing algorithm before porting it to the RC64.  
 
On the other hand, the performance results show the 
high potential of the RC64 for on-board data processing 
algorithms. As an example, the speed-up and 
performance obtained on the AIRS sample, with a 
maximum speed-up of 58.35 and throughput of 0.45 
Msamples/s, are significant, taking into account that 
there is still room for further optimisations.  
 



 

Nevertheless, we identified a few improvements, 
although not mandatory, that could make the usage of 
the RC64 platform more convenient to use. 
 
First, a more detailed documentation explaining how to 
program efficiently the RC64 would be of great value: if 
the documentation provides main guidelines, some “tips 
and tricks” could be very helpful. 
 
Another important aspect to consider is the tracing 
system: currently only software execution traces are 
supported by the platform, which in some cases can be 
intrusive. Hardware data and instruction traces would 
allow a finer analysis and then a better understanding of 
the application execution on the platform. Another point 
related to the preceding one, access to the DDR via 
JTAG probe would be of great help when debugging 
applications. Otherwise, the user has to print the data 
while reading or writing it into DDR via DMA transfers 
and he never has a complete view of the memory 
content at a given moment.  
 
Last point, direct DMA transfers between I/Os (SpW, 
SpFi) and DDR would allow to save shared memory for 
the applications, as no deallocation of memory is 
supported.  
 
9. CONCLUSIONS 

Regardless of the possible improvements mentioned in 
the previous section, it is clear the interest of using the 
RC64 platform for on-board data processing.  
 
The performance that it offers is substantial and at a 
level that is unseen anywhere until now in the area of 
radiation-hardened platforms. It certainly opens the door 
to increased on-board data processing capabilities of 
deep space missions, with the consequent increase on 
flexibility on the type and amount of applications that 
could be embedded.  
 
Even if this study has been focused on data 
compression, other types of applications could benefit 
from this high performance platform, such as image 
processing or even artificial intelligence. 
 
Regarding the CCSDS 123.0-B-2 standard, the 
parallelisation of the algorithm has shown that the 
reference implementation is too generic to be efficiently 
implemented on-board while keeping good 
performances on all possible modes.  
 
For its implementation on a mission, a study of the 
dimensions of the images to be processed, the needed 
compression rate, and the resolution needs to be carried 
out in order to be able to specialise the implementation 
for the given mission.  
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