OBDP2021 Machine Learning Application Benchmark TSTCG – Space Systems Telecom & Navigation Processing Germany

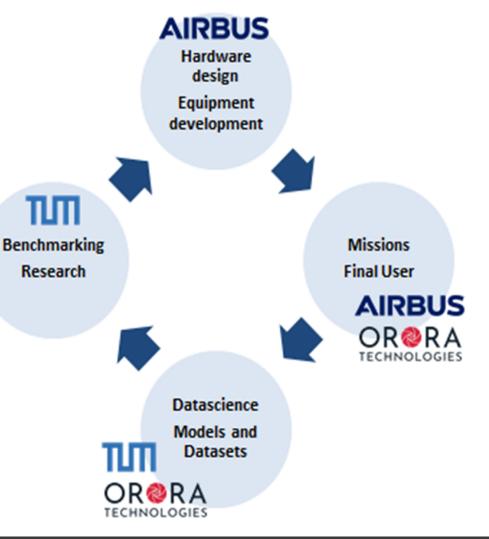
DEFENCE AND SPACE

- Max Ghiglione
- Airbus Defence and Space

MLAB – Machine Learning Application Benchmark

Presentation Outline:

- Intro Project
- Intro AI for Space
- ML Processing Market
- Commercial Benchmarks
- "Space" Benchmark
- First Submission Example
- Outlook


MLAB – Machine Learning Application Benchmark

Project Details:

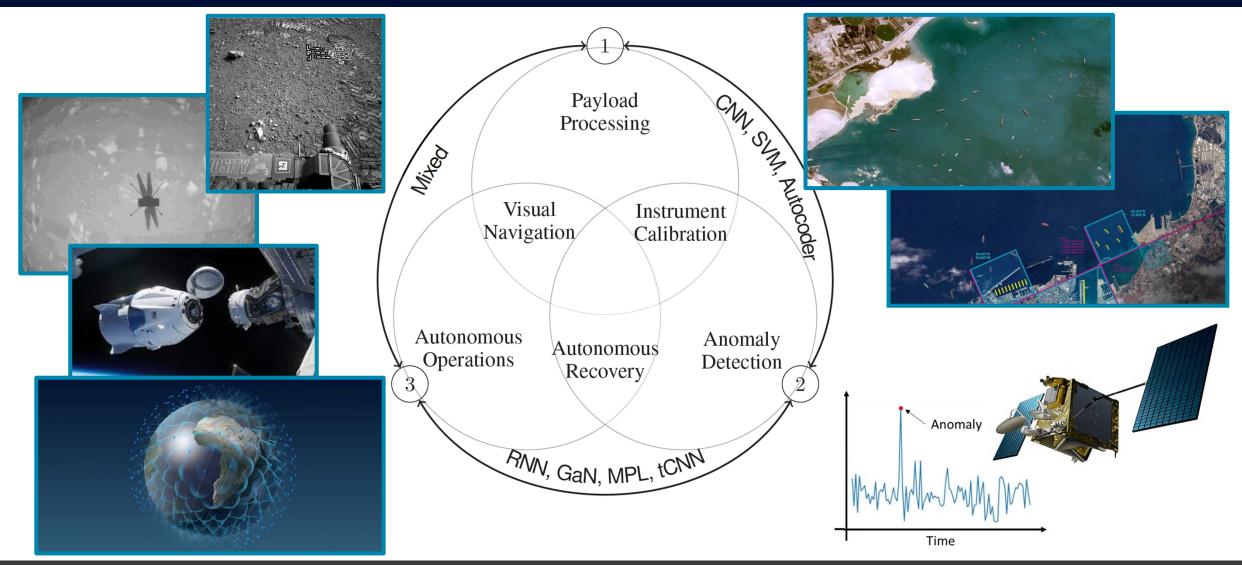
- ➢ GSTP AO10370
- Design of a benchmark for ML applications in Space
- Trade-off of: Versal, KU060, Myriad, Zynq US+
- First Phase started, requirement definition
- Conclusion planned June 2021

Teaming:

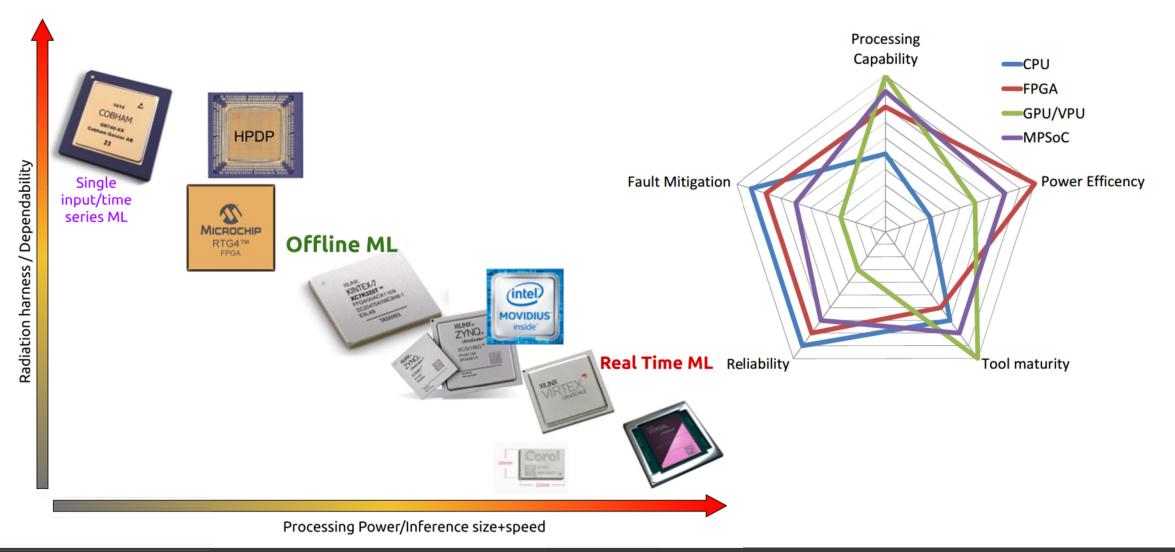
- ESA Technical Officer: Gianluca Furano
- > Airbus: Max Ghiglione, Vittorio Serra, Richard Wiest
- > **TUM CAPS:** Amir Raoofy, Carsten Trinitis, Martin Schulz
- > TUM BDGM: Gabriel Dax, Martin Werner
- OroraTech: Martin Langer

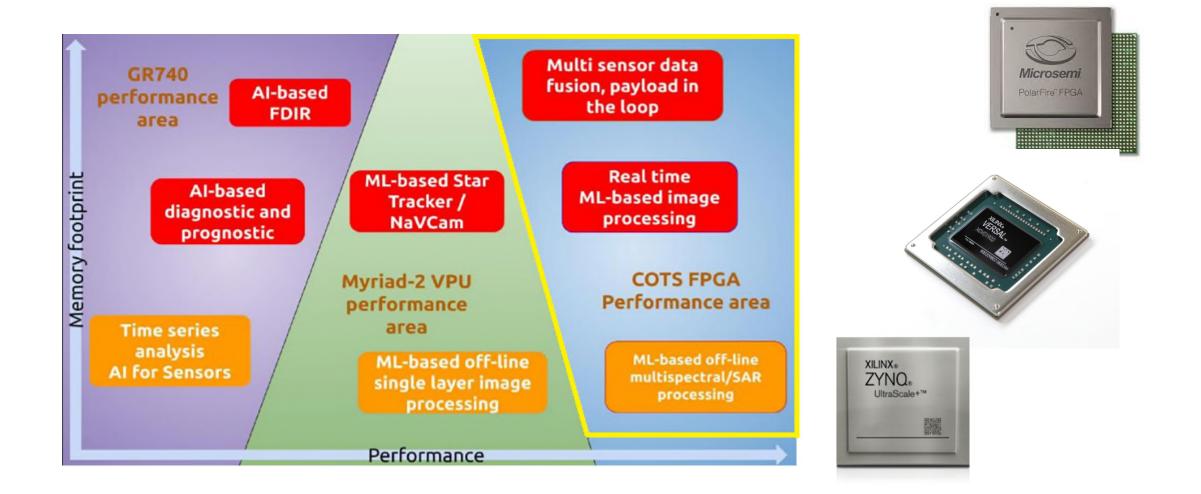
Step 1:

Design and implement a **benchmark for Machine Learning** applications for the space market. The benchmark shall:

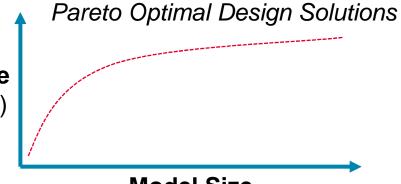

- Enable the industry to compare and replicate Machine Learning implementations
- Drive to develop ML applications and processing platforms for space

Step 2:


Demonstrate the feasibility of such **algorithms on a demonstrator breadboard** which shall be representative of future co-processing computers


State of Art – AI Onboard Data Processing

Market options for Machine Learning


Processing areas – COTS FPGA

Performance Requirements

- Power?
- Troughput?
- Accuracy?

Model Performance (Efficency, Accuracy)

Model Size (Quantization, Pruning)

Use Case	Accuracy	Throughput	Power
Image Class.	Quality	5 FPS	10W
(Heavy)	Metric	5115	10 **
Image Class.	90%	10 FPS	Quality
(Light)	90 70	10115	Metric
Obj. Detection	85%	Quality	10W
(Heavy)	0570	Metric	10 **
Obj.Detection	80%	10 FPS	Quality
(Light)	8070	10113	Metric

- Memory?
- Threading?
- Quantization?

Commercial Inference Benchmarks - Models

Area	Task	Model	Dataset	QSL Size	Quality	Server latency constraint
Vision	Image classification	Resnet50- v1.5	ImageNet (224x224)	1024	99% of FP32 (76.46%)	15 ms
Vision	Object detection (large)	SSD- ResNet34	COCO (1200x1200)	64	99% of FP32 (0.20 mAP)	100 ms
Vision	Medical image segmentation	3D UNET	BraTS 2019 (224x224x160)	16	99% of FP32 and 99.9% of FP32 (0.85300 mean DICE score)	N/A
Speech	Speech-to-text	RNNT	Librispeech dev-clean (samples < 15 seconds)	2513	99% of FP32 (1 - WER, where WER=7.452253714852645%)	1000 ms
Language	Language processing	BERT	SQuAD v1.1 (max_seq_len=384)	10833	99% of FP32 and 99.9% of FP32 (f1_score=90.874%)	130 ms
Commerce	Recommendation	DLRM	1TB Click Logs	204800	99% of FP32 and 99.9% of FP32 (AUC=80.25%)	30 ms

V. J. Reddi *et al.*, "MLPerf Inference Benchmark," 2020 https://mlcommons.org/en/

Commercial Inference Benchmarks – Scenarios

Scenario	Query Generation	Duration	Samples/query	Latency Constraint	Tail Latency	Performance Metric
Single stream	LoadGen sends next query as soon as SUT completes the previous query	1024 queries and 60 seconds	1	None	90%	90%-ile measured latency
Multiple stream	LoadGen sends a new query every <i>latency constraint</i> if the SUT has completed the prior query, otherwise the new query is dropped and is counted as one overtime query	270,336 queries and 60 seconds	Variable, see metric	Benchmark specific	99%	Maximum number of inferences per query supported
Server	LoadGen sends new queries to the SUT according to a Poisson distribution	270,336 queries and 60 seconds	1	Benchmark specific	99%	Maximum Poisson throughput parameter supported
Offline	LoadGen sends all queries to the SUT at start	1 query and 60 seconds	At least 24,576	None	N/A	Measured throughput

V. J. Reddi *et al.*, "MLPerf Inference Benchmark," 2020 https://mlcommons.org/en/

"Space" Benchmark

Benchmark design:

- Use Cases
- Datasets
- Models
- Performance Metrics

Submission Types:

- **Open** (optimized)
- **Closed** (fixed parameters to compare hardware)
- Hardware evaluation (Fixed Model and Quantization) lacksquare
- In the future could be extended for **Model evaluation** (Fixed accuracy or power)

Area	Payload Processing			Payload Processing			ing
Dataset	Airbus Shir	Airbus Ship Detection			Indian Pine		
Task	Object D)etec	ction	HyperSpectral			
Architecture	Unet- MobileNet-v2	Une	et-ResNet- 50	3D Une	et		
Size	224x224				\mathbf{k}		
Oracle acc.	90%						
Quantiz. acc.	85%						
Resources	DPU*		2	- 44			
Troughput	15 FPS						
				A. Stor			
compare hardw	are)		0 1000	2000 Meters	0	1000	2000 Meters

MLAB Benchmark – First proposal for the model set

Use Case	Model	Dataset
Image Classification	Resnet50	HyRank
(Heavy)	Multilabel	≥384x384
Image Classification	MobileNet-v1	BigEarthNet
(Light)	Singlelabel	224x224
Object Detection	UNet	Airbus Ship
(Heavy)	ResNet50	≥384x384
Object Detection	UNet	Airbus Ship
(Light)	Tiny YOLOv3	224x224
Hyperspectral	3d UNet	Indian Pine
$(220 \ge f \ge 13)$	JUUNCI	fx224x224
Anomaly Detection	tCNN,Wavenet*	multi-input
(Heavy)	icinin, wavenet	timeseries*
Anomaly Detection	GAN,RNN*	single-input
(Light)	UAIN, MININ	timeseries*

MLAB Benchmark – Application examples

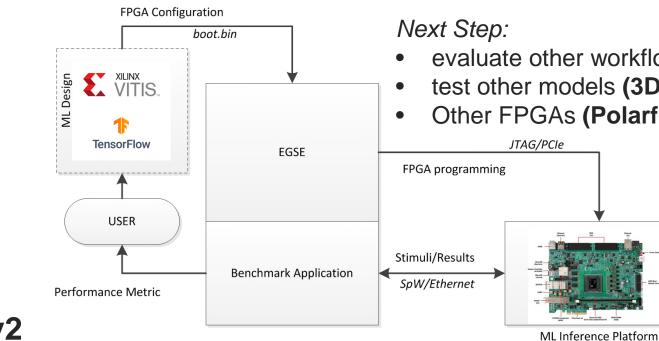
	Use Case	Model	Dataset	
	Image Classification	Resnet50	HyRank	
	(Heavy)	Multilabel	≥384x384	
	Image Classification	MobileNet-v1	BigEarthNet	
Future mission	(Light)	Singlelabel	224x224	
use case:	Object Detection	UNet	Airbus Ship	
"Douload Dracooping	(Heavy)	ResNet50	≥384x384	COTS Processing:
"Payload Processing performed in parallel to	Object Detection	UNet	Airbus Ship	Zynq Ultrascale+
regular operation"	(Light)	Tiny YOLOv3	224x224	
	Hyperspectral	3d UNet	Indian Pine	
 Not mission critical 	$(220 \ge f \ge 13)$	JU ONCL	fx224x224	
 Low Reliability and 	Anomaly Detection	tCNN,Wavenet*	multi-input	
availability req.	(Heavy)		timeseries*	
	Anomaly Detection	GAN,RNN*	single-input	
	(Light)	0/11/,1/11/	timeseries*	

Demonstration of a Benchmark Submission

Use Case:

EO Payload Processing

Hardware:


Zynq Ultrascale+

Workflow:

Vitis-Al

Models:

- Unet
- Unet + ResNet50
- Unet + MobileNetv2

Results:

- Image sizes up to 224x224 tested
- +10 to 20 FPS reached in single threading
- Shows first feasibility for future missions
- Inputs used to determine benchmark metrics
- evaluate other workflows (FINN, Matlab)
- test other models (3D Unet, YOLO)
- Other FPGAs (Polarfire + VectorBlox)

Thank you

