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ABSTRACT

Embedded GPUs have been identified from both private
and government space agencies as promising hardware
technologies to satisfy the increased needs of payload
processing. The GPU4S (GPU for Space) project funded
from the European Space Agency (ESA) has explored
in detail the feasibility and the benefit of using them for
space workloads. Currently at the closing phases of the
project, in this paper we describe the main project out-
comes and explain the lessons we learnt. In addition, we
provide some guidelines for the next steps towards their
adoption in space.

1. THE GPU4S PROJECT
The space industry is facing a dramatic increase in the
performance required by future missions as forthcoming
spacecraft require to acquire orders of magnitude more
data compared to existing ones, supporting much higher
resolutions, precision and sampling frequencies. More-
over, other types of space missions like robotic explo-
ration such as the ExoMars rover [1] and new types of
space missions and concepts like the space tug [2] and
active debris removal [3] or the Mars Helicopter [4] that
uses a COTS processor for operation, all of them re-
quire highly autonomous operations, which need signifi-
cant on-board processing capabilities.

Embedded Graphics Processing Units (GPUs) have
shown a great potential in high performance processing
in temperature and battery-constrained devices, follow-
ing the widespread and successful use of GPUs in high-
performance domain. For this reason, there is a lot of in-
vestment in GPU studies funded from government space
agencies [5][6][7][8] as well the private sector [9][10].
Some of these works focus on radiation studies of cer-
tain GPU products, while others implement closed source
space applications. However, each of these works is iso-
lated and uses its own hardware and software, the lat-
ter frequently limited from export control due to space’s
sensitive nature in defence applications, which makes im-
possible to compare against one another and draw general
conclusions about the use of GPUs and their adoption in
space.

The GPU4S (GPU for Space) [7] project funded by the
European Space Agency (ESA) which is currently at its
closing phase, aims at evaluating the potential of embed-
ded GPUs for use in space, for the first time and define the
roadmap of GPU adoption in space. In order to achieve
this long term goal, several intermediate steps had to be
achieved.

First, we had to confirm that the existing and mainly fu-
ture space software can be effectively parallelised in or-
der to exploit the performance advantage of GPUs – as
they are known to work well with certain types of algo-
rithms which require massively parallel processing, but
also exhibit regular behaviour in memory accesses and
branching.

To achieve this, we needed to ensure that programming
GPUs can be mastered with reasonable effort by indus-
try, and therefore highly efficient software versions can
be achieved without excessive investment on the develop-
ment cost. For example, the Cell Broadband Engine [11]
(CBE) jointly designed by IBM, Sony and Toshiba was
one of the most powerful and energy efficient architec-
tures of its time, but it was proven notoriously difficult to
program [12], reducing its industry adoption beyond the
gaming sector.

Second, we needed to be able to experimentally evaluate
various embedded GPUs to identify the most promising
candidates for space use, primarily based on their per-
formance and energy efficiency, as well as their software
tools and libraries. This resulted in a selection of the
most promising IP (intellectual property) GPU solution
as well as the most promising COTS (commercial off-
the-shelf) GPU solution. The former can be used for the
development of a radiation hardened version of an em-
bedded GPU IP, based on European technology, which is
the leader in embedded GPU designs, to support Europe’s
non-dependence in the space domain, while the latter can
be used in the shorter term to enable the fast adoption of
GPUs in space.

Next, in order to perform a comparison between vari-
ous GPUs and their GPU programming models for the
space domain, we created an open source benchmark-



ing suite for GPU on board-processing, named GPU4S
Bench [13], which was used for the benchmarking of the
selected GPU devices. In addition to this benchmarking
suite, we developed several demonstrators of space algo-
rithms ported on embedded GPUs [14] [15].

Finally, we define a roadmap regarding the adoption
of GPUs in space. In this paper, we describe the
main outcomes of the above performed activities in the
GPU4S project and we present the lessons we have learnt
throughout the duration of the project.

2. MAIN OUTCOMES AND LESSONS LEARNT

2.1. Space Software Survey

One of the first tasks of the project was the study of ex-
isting space software as well as the requirements of fu-
ture missions. For this reason, we have conducted a the-
oretical analysis of algorithms found in several space do-
mains, identifying potential candidates for GPU acceler-
ation based on their processing characteristics. The out-
come of the survey has been published in two parts, in [7]
and in [16].

In particular, we observed that most of the existing space
algorithms are a good fit for the GPU programming
model, especially the ones used in on-board image pro-
cessing. As these algorithms are mainly working on sev-
eral pixels independently, there is abundant parallelism
to be exploited by the massively parallel GPU hard-
ware. This has been also confirmed at a later stage of the
project, by our demonstrator of the Euclid NIR (Near In-
frared) ESA software, which we ported on an embedded
GPU [14].

On the other hand, one type of algorithms we initially
identified as not a good candidate for GPU parallelisa-
tion was compression algorithms such as the ones found
in the CCSDS standard. The reason for this was the low-
parallelism exhibited in such operations, due to the se-
rial operation of the algorithm and dependencies between
parts of the data.

However, later in the project we implemented an-
other set of demonstrators, porting the CCSDS 121
and CCSDS 122 space compression algorithms, which
showed that even these algorithms could be accelerated
on a GPU [15]. This was achieved by exploiting coarse
grained parallelism, similar to the batching performed in
neural network processing on GPUs.

Regarding the requirements of future missions, we ob-
served a trend towards increasing the amount of acquired
data from scientific instruments, as well as of the com-
putational power required to support advanced function-
alities such as autonomous navigation, which could be
provided by GPUs.

Lesson 1: Modern GPUs can accelerate a wide
range of existing and future on-board algorithms,
even when their parallelism is not inherent.

Lesson 2: The only certain way to verify whether
an algorithm can significantly benefit from a
GPU, is to actually port it to a GPU.

2.2. Embedded GPU Hardware Survey

Another important project milestone was the study of ex-
isting embedded GPUs in order to select the most ap-
propriate GPU IP of a European Embedded GPU vendor
for a future radiation-hardened implementation by ESA
or the most appropriate COTS embedded GPU for short
term adoption. One of the criteria established by ESA
for the selection was the availability of the IP in order to
produce an FPGA prototype, while another one was the
software ecosystem of each GPU.

We started by surveying embedded GPUs using their pub-
lic information and by producing a classification of em-
bedded GPUs and GPU-like architectures for space [7].
In particular, we identified low-end and high-end GPUs
based on their ability to support general purpose pro-
gramming languages or only graphics. Moreover, we de-
fined additional classes such as COTS, soft IP products
as well as high-level synthesis.

Meanwhile, we established links the licensing depart-
ments of embedded GPU vendors and suffered long de-
lays until Non Disclosure Agreements (NDAs) were in
place, as we explain in [16]. However eventually it be-
came apparent that no commercial silicon IP vendor is
willing to share any non-public details about their prod-
uct, including their price, without an upfront commitment
to buy their IP, even under NDA. This creates the counter-
intuitive situation in which one IP customer has to se-
lect an IP vendor without being able to know their exact
benefit or drawbacks compared to an equivalent product
from a competitor. However, once the customer decides
to do business with an IP provider, then they can get ac-
cess to the full portfolio of that vendor, in order to select
the most appropriate product offering to their needs, from
that company.

Lesson 3: There is no way to select a priori the
most appropriate commercial silicon IP from dif-
ferent vendors.

For this reason, the selection of proprietary IPs by semi-
conductor companies is performed with obscure criteria
e.g. using consulting companies or personal decisions
from high-level executives.

Another important finding from our experience is that the
current licensing models of most IP vendors are focused
around royalties arising from large volume markets such
as consumer electronics or automotive, and therefore they
are not prepared to work with low-volume markets like
space, nor to customise their designs. There are also sev-
eral challenges for the production of FPGA prototypes
with commercial GPU IP. First, modern embedded GPU
designs cannot fit on existing FPGAs, without producing



a considerably reduced version, e.g. in terms of cache
size, number of shader cores etc. Moreover, these re-
duced version can only fit on specific FPGA boards ap-
proaching the cost of $50K. Obviously, this cannot be
achieved with the budget of a small exploratory project
such as GPU4S (150K euros).

Lesson 4: A project responsible to license or
produce a demonstrator with commercial silicon
or FPGA IP needs to have considerable budget
available, specifically allocated for the cost of the
IP vendor.

For this reason, it is not surprising that open source hard-
ware is increasingly considered for low volume markets.
For this reason, we extended our survey to open source
GPU designs. As we reported in [16], there are several
open source GPU or GPU-like designs.

The outcome of our survey however is not positive either.
Most of the existing GPUs are incomplete, model obso-
lete GPUs with deprecated software stacks, lack docu-
mentation and support. Moreover, the ones which repli-
cate commercial designs are potentially subject to patent
infringements. However, the most important limitation
of open source designs is their non-commercial friendly
licenses such as GPL, which make impossible to use in
a niche domain such as space, where several proprietary
IPs are combined in an FPGA or ASIC.

Lesson 5: Existing open-source GPU designs
cannot be used for our purpose.

Fortunately, meanwhile the open source hardware com-
munity has grown and matured significantly with the pro-
liferation of the RISC-V movement. These last couple of
years several successful examples of open source proces-
sor IPs with liberal licenses have been included in com-
mercial designs, which gives hope that in the future there
may be similar designs in the GPU domain.

Lesson 6: The RISC-V movement can create
opportunities for a commercially-friendly open
source GPU.

Apart from soft GPU IPs, we have also explored the pos-
sibility of High-Level Synthesis (HLS), which allows to
program modern FPGAs in an easy way using OpenCL
similar to GPUs, instead of hardware description lan-
guages. However, HLS is only available in the latest
COTS FPGAs but not yet in space-grade FPGAs. More-
over, this solution does not offer the fast reconfiguration
of GPU kernels, since the synthesis and reconfiguration
times of HLS kernels are significantly longer, in the or-
der of seconds or minutes. Last but not least, HLS kernels
written in OpenCL require heavy annotations or modifi-
cations to achieve high performance, so that their code is
considerably different that GPUs. However, HLS has a
potential to facilitate FPGA development for space and it
is worth to be explored in a separate ESA study.

Lesson 7: HLS is not equivalent to a soft GPU.

Since the soft GPU survey did not culminate in a vi-
able GPU product, we decided to consider COTS GPUs.
In terms of performance, our analysis showed that
NVIDIA’s embedded products are the ones providing the
highest theoretical performance, something we also con-
firmed at later stages with our benchmarking. Moreover,
NVIDIA’s proprietary programming language, CUDA, is
the one with the largest developer base.

NVIDIA’s embedded GPUs have been used in several
rugged products and have been chosen for NASA Mis-
sions, however they suffer from short product lines with
short market availability window. Therefore, component
obsolescence in critical domains can be an issue. In addi-
tion, NVIDIA supplies their latest GPU SoCs only as part
of modules, which limits the possibility for dedicated de-
signs for space, both in terms of form factor and use of
other COTS devices (e.g. power ICs) that need their own
screening for the use in space.

Embedded AMD products have been also used in rugged
environments, especially in aerospace. AMD supports
the open standard OpenCL as well as a CUDA compati-
ble language called HIP [17]. In addition, AMD provides
more information regarding its architecture, and for this
reason open source drivers as well as third party drivers
such as the safety certified drivers from CoreAVI [18]. In
terms of product lines offer longer availability for prod-
ucts used in critical domains (10 years).

A recent study on the radiation tolerance of COTS GPU
SoCs from several vendors, revealed some concerns
with certain NVIDIA GPUs which were not as appar-
ent in AMD GPUs, due to being implemented with other
foundry processes [19].

Lesson 8: NVIDIA embedded products pro-
vide higher performance and software tooling,
are only available as modules, which make space
qualification more difficult.

Lesson 9: AMD provides a more open approach
in terms of module availability, open hardware/-
software specification, open source and safety
certified drivers, which make them more attrac-
tive for space.

From European vendors, ARM dominates the embedded
GPU market, while Imagination Technologies was at the
time of our survey the only one to offer an ASIL-B safety
certified GPU in the Renesas R-CAR H3 platform and
was designing new products with ASIL-D certification.
However, ARM recently announced a GPU design com-
pliant with ASIL-D. In terms for absolute performance,
European GPUs are outperformed by NVIDIA and AMD
products.



2.3. Embedded GPU Benchmarking

The next important milestone has been the performance
and performance efficiency benchmarking of the selected
platforms: NVIDIA Xavier, ARM G-72 found in the
HiKey 970 and the Imagination PowerVR GX6650 found
in Renesas’s R-CAR H3.

However, the cancellation of the manufacturing of the
R-CAR H3 line led us to replace it with the NVIDIA
TX2. Moreover, in the meanwhile, an AMD Embedded
Ryzen platform V1605B has been released. For this rea-
son, we extended our analysis to this platform as well,
by purchasing one of the first production units. Unfortu-
nately, setting up a software environment with a working
OpenCL GPU driver has been very challenging. We had
faced similar issues with setting up the environment of
the HiKey. On the other hand, setting up the NVIDIA
platforms was seamless. The reason is that NVIDIA has
full control over its platforms, while other GPU design
firms depend on integration with third part IPs and face
software fragmentation.

Lesson 10: NVIDIA’s vertical integration results
in tighter control of product releases in both hard-
ware and software.

In order to benchmark the selected embedded GPUs, we
identified the need for a relevant on-board benchmarking
suite.

However, we noticed a considerable lack of standard
benchmarking solutions for payload processing in space,
especially regarding GPUs. To deal with this, we have
created the GPU4S Bench [13], an open source bench-
mark suite of representative space algorithms across dif-
ferent space domains based on the space software survey
we conducted in the first months of the project. In ad-
dition to GPU benchmarking, GPU4S Bench can be also
used for the evaluation of GPU programming models for
space payload processing. The reason why we designed
GPU4S as Open Source with ESA’s GPL-like license, is
in order to be free of company IP rights or government
export controls, which are dominating the space domain.

Lesson 11: Complex space application software
is subject to restrictions.

Open source benchmarks maximise the potential of be-
coming the de-facto means of performance and energy ef-
ficiency comparison between embedded GPUs for space,
as well as to allow reproducibility and crowd-sourcing
results from new architectures. Being able to directly
compare results from the same suite among different tar-
gets saves time and reduces costs, while it enables tak-
ing more straightforward decisions for the hardware of
future space programs. Such a benefit has been already
observed with the NPB benchmarks from NASA in su-
percomputing [20] as well as the NIR HAWAII-2RG BM
algorithm [21], which has been used in several internal

and ESA-funded activities for comparative analysis of
numerous platforms. Such an algorithm is much more
useful compared to an advanced and complete but propri-
etary processing space application e.g. [5] or [22], which
cannot be reproduced in future studies performed by dif-
ferent contractors.

Details regarding the design principles and the imple-
mented algorithms can be found in [13] while a summary
of the coverage of different space domains can be seen in
Table 1.

GPU4S Bench and CCSDS [15] implementations devel-
oped in GPU4S have been the basis of another open
source benchmarking suite developed by ESA, OBP-
Mark [34]. OBPMark provides complete space ap-
plications which can be implemented with the GPU4S
Bench optimised algorithmic building blocks and aims
on the benchmarking of any type of on-board comput-
ing platform. OBPMark replaces older ESA benchmark-
ing suites and is the recommended way of benchmarking
on-board devices. Both benchmark suites are closely re-
lated, share common code and benchmarking infrastruc-
ture. The source code of both suites is co-hosted and can
be obtained from http://OBPMark.org. Moreover
the website provides a result database and information
about contributing and result reporting.

Lesson 12: Open source benchmarks, such as
GPU4S Bench [13] and OBPMark [34], are re-
quired to circumvent space software restrictions
and maximise benefit from public funding.
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Figure 1. Performance of matrix multiplication on multi-
ple platforms with different sizes.
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on multiple platforms with different sizes.

Using the GPU4S benchmark suite allowed us to com-
pare results of the different GPUs. All measurements



Table 1. Building blocks of GPU4S Bench [13] extracted from current and future payload applications across all space
domains.

Domains Compression Vision Based Navigation Image Processing Neural Network Signal Processing
Building Blocks Processing

Fast Fourier Transform SAR [23], GENEVIS [24] ADS-B [25], NGDSP [26]
Finite Impulse Response Filter MER [27] ADS-B [25], NGDSP [26]

Discrete Wavelet Transform CCSDS 122 [28]
Matrix Computation MER [27], GENEVIS [24] HTI [29] Inference [30][31]

Convolution OpenCV HTI [29], GENEVIS [24] Inference [30][31]
Correlation OpenCV GO3S [32], GENEVIS [24] ADS-B

Max Detection and DNN Primitives MER [27] GO3S [32] Inference [30][31] ADS-B[25]
Synchronisation Mechanism GENEVIS [24] EUCLID NIR [21], GO3S [32] TensorFlow ADS-B [25], NGDSP [26]

Memory Allocation CERES [33], OpenCV EUCLID NIR [21], GO3S [32] TensorFlow ADS-B [25], NGDSP [26]

were obtained using the same power budget. Power mea-
surements were also performed when possible to com-
pute the energy efficiency.

The NVIDIA Xavier has outperformed all platforms in
terms of performance as it is shown in Figure 1 for
the matrix multiplication benchmark, while in terms of
energy efficiency, the best choice has been either the
NVIDIA Xavier or the TX2 as shown in Figure 2. Re-
garding the AMD V1605B platform we found out that
the unofficial custom GPU driver we used for OpenCL
support since AMD did not officially support OpenCL
by the time of our experiments resulted in lower perfor-
mance than expected. However the issue is being inves-
tigated and we believe that with proper software support,
its performance will be higher.

In terms of maximum power consumption, our power
measurements indicate that the GPU boards consume in
total up to 15W, as indicated by their TDP, therefore con-
firming our initial selection that they can fit in the power
budget of an on-board system.

Lesson 13: Embedded GPUs comply with on-
board power requirements.

Apart from the benchmarking of GPUs, the development
of the GPU4S Bench allowed us to evaluate also aspects
related to the programming model of the GPUs as well
as to their software ecosystem. First, the development,
debugging and maintenance of CUDA and its equiva-
lent open source version from AMD, HIP, are easier than
OpenCL, since the latter is a lower-level API and there-
fore each CUDA/HIP statement corresponds to multiple
OpenCL statements. In general, there is portability be-
tween the two languages, but not 100% guaranteed even
on the same platform. For example, we encountered a
corner case that prevented execution of the OpenCL since
the implementations make an implicit assumption that the
number of threads in a kernel have to be multiple of 32
although there is no such limitation stated in the standard.

Lesson 14: CUDA and HIP offer easier pro-
grammability than OpenCL.

In addition, since we developed hand-written, hand-
optimised and vendor libraries versions of our bench-
marks, we were able to assess whether it is possible to

obtain high performance on GPUs with reasonable pro-
gramming effort. In this aspect, we found two counter-
intuitive situations. First, vendor optimised libraries are
not always the fastest option. Most of these libraries are
optimised for long, repetitive executions, so they exhibit a
long initialisation cost that can exceed the actual process-
ing cost of small amount of data or for small periods of
time. This can be an issue in cases that the GPU applica-
tions vary in time during the mission, or simply because
an application or the platform needs to restart due to a
radiation fault. In these cases, hand written implemen-
tations are a more appropriate solution, even if they pro-
vide significantly lower performance, especially for small
sizes. However, we noticed cases in which our implemen-
tations outperformed the vendor library such as in double
precision floating point, probably because the library was
not optimised until then for our target platforms, which
are not frequently used for such calculations.

Lesson 15: Vendor optimised GPU libraries have
a large initialisation cost, so they are not always
the best choice, but they depend on the applica-
tion scenario.

Lesson 16: It is possible to obtain high perfor-
mance with reasonable GPU development effort.

Lesson 17: The only way to assess the obtained
performance is through actual implementation.

Apart from individual algorithmic building blocks used in
several space applications, we also ported space-relevant
full applications to embedded GPUs. This includes an
inference chain designed for the CIFAR-10 data set [13]
which is part of the GPU4S Bench, the Euclid NIR ESA
application [14][35] and implementations of the CCSDS
121 and 122 compression standards [15].

Our results have shown that in all cases, the NVIDIA
GPUs are able to provide significant speedups, both com-
pared to their CPUs as well as compared to existing space
processors. Figure 3 shows the performance results ob-
tained with the Euclid NIR application on the GPU. For
detailed results please refer to [35]. The same applica-
tions on the AMD platform provide lower GPU perfor-
mance, but strong parallel CPU performance compared
to the parallel CPU performance of the NVIDIA plat-
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forms. Again, the main reason for the low AMD GPU
performance is identified in the unofficial custom driver
we used. Once AMD offers official support for OpenCL
on V1605B, we expect to see higher performance. Over-
all however, the performance of the NVIDIA Xavier’s
GPU outperformed all other versions and platforms.

GPU4S Bench has been also ported to OpenMP and was
used to compare the performance capabilities of multi-
core CPUs and GPUs in the candidate platforms of the
H2020 UP2DATE project [36], which have been simi-
lar to the platforms considered in GPU4S: Xilinx Zynq
Ultrascale+, NVIDIA Xavier, NVIDIA TX2. Again,
the benchmarking results confirmed that the NVIDIA
Xavier’s GPU outperformed all other CPUs and GPUs.

Lesson 18: GPUs can significantly accelerate
complex space processing compared to other
technologies.

2.4. Radiation Effects

As already mentioned, a synthesis of radiation testing re-
sults of embedded GPUs are available [19], with indi-
cation that certain AMD devices have more promising
radiation tolerance than some recent NVIDIA devices,
mainly due to effects related to the used process node
technologies from competing foundries. Both types of
GPUs have been considered for experimental launches of
national agencies and nanosatellites. These missions are
going to provide valuable information regarding the radi-
ation tolerance of these devices in the space environment.
However, as GPU SoCs are complex devices to test for ra-
diation effects - and currently publicly available radiation
test results do not cover all needed parameters for future
space qualification - more radiation tests are essential for
their general use in space. ESA is currently planning fur-
ther radiation tests of embedded GPUs.

Meanwhile, our analysis from the use of COTS devices
in space shows that solutions based on redundancy can
mitigate radiation effects. However, hardware triplication
as implemented in some space-grade systems although
it is effective, it will probably exceed significantly the
power budget of an on-board space system. For this rea-
son, other solutions leveraging the inherent parallelism

of the GPU hardware and software can achieve similar
degree of reliability. For example, hardware [37] or soft-
ware [38] GPU reliability solutions proposed for the au-
tomotive sector can be reused in space as well. Soft-
ware solutions [39] are particularly interesting, since they
can be applied directly in existing systems. However, all
these potential proposals need to be assessed in a relevant
space environment as part of a radiation testing campaign
and/or experimental missions.

Lesson 19: GPU reliability solutions for the au-
tomotive domain can be adopted for use in space.

3. ROADMAP AND WAY FORWARD

Based on the project’s outcomes and the lessons learnt
that we have presented, we conclude that Embedded
GPUs are an appropriate solution for high-performance
processing in space.

However, in order to be adopted we need to solve some
of their identified issues. First, it seems that the only po-
tential option at least at the moment is to adopt them as
COTS components. Therefore, we need to address the
up-screening of these devices, particularly in terms of
radiation effects, as well as their long term availability.
COTS devices are becoming more accepted for the use in
space, mainly driven by adoption in nano-satellites. ESA
is also working on specific guidelines for the use of COTS
devices in space.

Moreover, the available software fault detection, isola-
tion, and recovery (FDIR) techniques need to mature and
be tested in relevant environments. Such activities are
already planned by national agencies and can be comple-
mented by flight heritage results from commercial and
nanosatellite missions using GPUs.

Regarding the domains of COTS GPU adoption in space,
institutional missions for example are rarely based on
such technologies in order to reduce risk. However, if
they are proven as an enabling technology by the use in
other type of missions, they may be considered for wider
adoption.

Earth Observation commercial missions are more likely
to adopt GPUs since their typical processing tasks can
be easily parallelised. Moreover, the recent experimen-
tal use of AI processors in space such as the Intel Mo-
vidius in Φsat-1 for cloud removal in Earth Observation
shows that this domain is open to COTS hardware and
software. With the increased adoption of AI techniques
in space, GPUs have the potential to be used. The reason
is that GPUs are good accelerators for AI taks as we have
shown also with our CIFAR-10 demonstrator. Although
AI accelerators are more efficient for this type of pro-
cessing, layer operations of AI algorithms are constantly
changing, so the flexibility of GPUs provides a long term



solution for AI processing as well as for other image pro-
cessing too.

Nano-satellites already heavily rely on COTS compo-
nents and can directly benefit from embedded GPUs, and
there are several missions which already adopt embed-
ded GPUs. The main benefit in that case is the reduction
of cost both in terms of hardware as well as of software,
which can be developed fast and there is large availabil-
ity of GPU software developers. This applies also to con-
stellation missions, where cost is an important driver, too,
although at a smaller extent.

The mission duration and orbit are also important for the
possible adoption of GPUs. Low-earth orbit missions
(LEO) and missions with short duration will likely adopt
COTS GPUs first, due to the more limited exposure to
radiation.

Finally, another domain that can benefit from GPUs is
New Space. Several commercial satellite operators en-
vision the use of satellite-as-a-service in which they rent
time of their platform to customers. Since the processing
requirements of each customer are different and are not
known a priori, the ability of the fast reprogramming of-
fered by the GPU can be an important feature for these
missions.
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