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ABSTRACT

Space operations are performed in a dynamic and com-
plex environment, which exhibits non-deterministic ac-
tion outcomes and where unexpected events may require
human intervention. In this regard, tasks’ scheduling and
optimization of onboard resources are crucial points in
the problem of enabling autonomous capabilities aboard
satellites. Reasoning agents and autonomous decision-
making systems represent valid approaches to such kind
of problem. Nevertheless, these solutions require large
efforts in defining consistent knowledge bases and mod-
els about the operative environment and about the agent
itself.

Reinforcement Learning (RL) is currently one of the most
compelling research fields in AI. Specifically, an RL al-
gorithm allows agents to learn how to perform actions
in an autonomous way through interaction with the sur-
rounding environment. Bearing that in mind is possible
to start exploring the advantages of such kinds of algo-
rithms applied to the problem of autonomous space mis-
sions. Specifically, the objective of the research hereby
presented is the implementation of an autonomous agent,
which emulates an operating Earth Observation satellite,
capable of scheduling downlink operations in advance,
taking actions accordingly to its available resources and
the priority of the data generated, aiming to optimize its
tasks outcome at the same time.
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1. INTRODUCTION

In recent years the attention towards operations planning,
has grown attention in space community due to the in-
creasing complexity involved in space operations. The
appearance of commercial players and the development
of mega-constellations will increase the pressure on oper-
ators and the complexity involved in space mission man-
agement. A possible solution to this increasing complex-
ity is to use advanced technology for automation, Artifi-
cial Intelligence (AI) in particular can be a powerful tool
for tackling and possibly solve this type of problem.

In this framework is possible to introduce another ele-
ment: Markov decision process (MDP), which is an ef-

fective approach to model the sequential decision prob-
lem to achieve a long-term goal. Reinforcement Learn-
ing (RL) has been developed as a promising approach to
solve MDP problems, where the agent makes sequential
decisions through continuous interaction with the envi-
ronment. The ultimate goal of the agent is to find an op-
timal policy to maximize the cumulative reward. In RL,
the mapping between state and action is stored in tab-
ular form, which is impractical, especially for the large
state space and continuous action space. Combined with
some form of function approximator – such as Deep Neu-
ral Networks (DNN) – model-free Deep Reinforcement
Learning (DRL) is capable of making intelligent sequen-
tial decisions in challenging environments.

In recent years, this has resulted in a powerful frame-
works capable of achieving, and in some cases exceeds,
human-level performances (Silver [1]). As demonstrated
by Mnih [2] et al. the use of Neural Networks as a
function approximator, set a new end-to-end approach to
RL that greatly reduces the computational complexity in-
volved in using other methods, and the capability of gen-
eralizing to a wide range of possible scenarios.

This approach led us to adapt the RL problem framework
to the downlink operations scheduling problem to solve
on board, as a first proof of concept with the clear goal of
extending this to other use cases.

In this paper, we design an AI-based scheduling algo-
rithm for managing downlink operations. We treat the
problem as a combinatorial optimization problem. Given
a sequence of packets to be downloaded, the agent has to
select a subset of packets with maximum total priority to
fill the downlink window such that the cumulative length
of the packets does not exceed its capacity.

The work is structured as follows. The problem frame-
work and the actual solutions are presented in section
2. Section 3 presents the packet scheduling problem for
downlink operations using the Markov Decision Prob-
lem formulation on which a DRL-based algorithm is ap-
plied. Then section 4 presents a series of experiments
performed within the simulation environment plus ad-
ditional information regarding the deployment on space
grade hardware. Finally, section 5 concludes the paper
by presenting some final thoughts and extensions towards
next steps.



2. BACKGROUND

2.1. Space systems downlink operations

An important part of space operations, in particular in
Low Earth Orbit, is directly affected by downlink sched-
ules. The efficiency and reliability of this operation is
crucial to deliver the objectives of a space mission.

However, many uncertainty sources can directly impact
this operation: the quantity of samples generated dur-
ing scientific missions, atmospheric conditions, memory
constraints, bandwidth constraints are just some of the
aspects to consider for designing an effective downlink
scheduler system.

As an example of this complexity, let’s consider an ob-
servation satellite in LEO with a single grey-scale cam-
era that collects geo-referenced images, only of particular
areas of the Earth surface and only in particular lighting
conditions.

The photos are generated in a stochastic way which is
mainly affected by the satellite and Sun position. The
complexity is even greater considering other variables
such as:

• the limited amount of storage capabilities of the on-
board computer,

• the different priority of the generated data (e.g.: high
priority to images, low priority to meta-data and
auxiliary data),

• the limited and variable downlink bandwidth.

This environment can be partially solved using a rule-
based system, however his randomness and the variabil-
ity of conditions not directly connected to the mission
(e.g.: clouds on the ground station) can greatly increase
the number of states to envision and to solve.

In this context a learning system can understand his envi-
ronment acting accordingly without an explicit definition
of the states to foresee.

2.2. Introduction to Reinforcement Learning

The founding principle of Reinforcement Learning is
learn by interacting with the world. Humans and more
generally every organism in the world is interacting with
it counteracting in order to survive or, in other terms in
order to maximize the expectancy of surviving.

This expectancy is also known, in the simplified frame-
work of Artificial Intelligence, as a reward function r.

Figure 1. The Reinforcement Learning loop. An agent is
interacting with the surrounding environment, changing
his state (St+1) and getting a reward.

The final goal of the RL algorithm is to find an optimal
policy π∗ that maximizes the expected return – the cumu-
lative reward the agent receives in the long run – which
corresponds to the state value function V .

This process is described in Figure 1 (Sutton and Barto
[4]). The agent is sensing as input the initial state St from
the environment. On that basis, select an action, At. One
time step later, in part as a consequence of its action, the
agent receives a numerical reward, Rt+1 and finds itself
in a new state, St+1.

The agent continuously interact with the environment,
and at a specific time step t the value function under the
policy π is defined as:

Vπ = Eπ[G
t] = Eπ[r

t + γrt+1 + γ2rt+2 + ...] (1)

where G represents the return and γ is a parameter be-
tween [0,1] called discount factor. The discount factor
determines the present value of future rewards: as it ap-
proaches 1, the return objective takes future rewards into
account more strongly.

As a practical example, an RL-based space lander needs
to learn an optimal policy for controlling the engines and
attitude system to avoid crashes on the ground or hard
land. The agent is punished if the action taken leads to
destruction or is rewarded in a successful landing.

2.3. Combinatorial optimization problems

Combinatorial optimization problems (COPs) can be
frames as a method for searching the best element from
a set of discrete elements; thus, in principle, any type of
search algorithm or meta-heuristic can be used to solve
them. Typical COPs are the traveling salesman problem
(TSP), the minimum spanning tree (MST), and the knap-
sack problem.

The drawback of this class of methods are that: generic
search algorithms are not guaranteed to find an optimal



solution and they are not guaranteed to run fast (in poly-
nomial time).

We treated our problem as one of these combinatorial
problems, the Knapsack Problem (KP). KP is a combi-
natorial optimization problem that aims to maximize the
value of the items contained in a knapsack subject to a
weight constraint. There are a few versions of the prob-
lem in the literature. We considered two of them as they
are closely related to our scheduling problem.

In the binary (0-1) Knapsack problem, only one copy of
each item is available, i.e., the agent can add items to the
knapsack only once. Given a set of items, the goal is to
determine the quantity of each item to include in a collec-
tion, so that the total weight is less than or equal to a given
limit and the total value is as large as possible. Here, the
complete set of items must be known a priori, and for
each item, the weights and values are given. The problem
has been well studied and is typically solved by dynamic
programming approaches or by mathematical program-
ming algorithms such as branch-and-bound.

The online version of the KP is stochastic; each item ap-
pears individually with a certain probability and must be
either accepted or rejected by the agent. The goal here
is the same as in traditional knapsack problems: to maxi-
mize the value of the items in the knapsack while staying
within the weight limit, although it is more challenging
because of the uncertainty about each available item.

3. DESIGN

In this section, we present our design choices for on-
line scheduling with Reinforcement Learning. We ap-
proached the two combinatorial optimization problems
described in the previous section, the binary KP and its
online version, using instead a RL-based framework. We
formulate the problem and describe how to represent it
as an RL task by formalizing it as a Markov Decision
Process (MDP). We then outline our RL-based solution,
building on the algorithms described in the previous sec-
tion.

3.1. The RL-based scheduling model

The goal is to design an agent capable of optimizing
downlink efficiency by maximizing the priority of pack-
ets downloaded during periods of ground station (GS)
visibility. These two main objectives relate mainly to the
priorities and length of the packets to be downloaded and
the available downlink capacity.

To address the problem in terms of RL, we have to trans-
form the goal into a problem formulation and then for-
malize the problem itself as an MDP (Markov Decision
Process).

We can think of the problem as an episodic task by mak-
ing some assumptions. First, there is a collection phase
in which the satellite collects all the data during its trajec-
tory before reaching GS visibility. When a GS is reached,
the agent starts performing actions, selecting a particular
set of packets scheduled for the downlink to optimize the
throughput and downlink efficiency. If the agent can no
longer select any packet due to the downlink capacity or
no more are available, the episode ends, and the loop re-
peats.

3.2. Problem formalization: the Markov Decision
Process

State space

Since the problem is treated as an MDP, there is the im-
plicit assumption of full observability of the environment.
Considering the figure 2, the environment is internally
characterized by the memory buffer containing the pack-
ets collected during the satellite’s trajectory, and each
packet is characterized by its length and priority. A possi-
ble representation of the state used by the agent to select
actions could be a vector containing at each timestep:

• The priority and length of the i-th packet selected for
the downlink at time-step t.

• The total amount of data — [KB] — stored in the
satellites’ memory and the relative sum of priority.

• The residual downlink capacity.

In the online version of the problem, the agent do not
have the overall knowledge about the stored packets and
the total values of length and priority. Data arrive in an
online fashion, and the agent can only accept or reject the
generated packet. This can happen, for example, because
the data is generated continuously, even close to a down-
link operation. Another reason could be the inability to
prepare a buffer of packets to download just before the
downlink. Then, the state representation we chose is a
vector containing:

• the current priority and length of the packet to be
scheduled

• current amount of data scheduled and the maximum
downlink capacity

Action space

A possible space of actions could be any subset of the
N packets stored in memory. However, in this way the
dimension of the action space may become too large. In-
stead, we can allow the agent to perform more than one
action at each “scheduling timestep” (the time does not
elapse, and the agent continuously makes scheduling de-
cisions until an invalid action is taken or there are no more
packets inside the memory buffer):



Figure 2. Scheduling model: environment-agent interaction

ai =

{
1, packet i will be scheduled for download
0, packet i will not be scheduled

An invalid action is an attempt to schedule a packet does
not fit inside the current downlink operation. We used
the same action space for both problems. This is the only
choice in the online version because we can only accept
or reject a packet generated in a specific timestep. We
could have used a larger action space for the offline case
with an action for each packet. Still, we used a binary
action space here for simplicity and allowed the agent to
go through the entire sequence and decide to schedule or
not a specific packet.

Reward function

To define an appropriate reward function, it is necessary
to consider the agent’s goal. In this case, a primary goal is
to maximize the priority of downloaded packets along an
episode. For this reason, we defined the reward function
as described below:

r =

{
pi, if packet i is scheduled
0, otherwise

where pi is the priority of the i-th packet. In the offline
case, to optimize the downlink efficiency and exploit it
as much as possible, the agent also receives a negative re-
ward proportional to the residual downlink capacity when
it takes an invalid action or when no more packets to be
scheduled are available, and the episode ends. In the on-
line problem instead a negative reward is given to the
agent when it tries to schedule a packet that exceeds the
downlink capacity.

3.3. Agent design

For choosing the appropriate RL algorithm to train in this
scenario, there are several aspects to consider. First, the
nature of the task: as described in the previous section,
the problem is seen as an episodic task. Then the agent
can use the discounted reward setting to learn the best

policy. When thinking of training the agent for a large
number of episodes, the number of states that the agent
will encounter is not known a priori, and it could be-
come huge. For this reason, an approximation method
for learning the value function or policy is needed. The
best choice, in this case, is to use a deep neural network to
have the possibility to learn the best features during train-
ing without constructing them by hand. Another thing to
consider is whether the agent should learn the value func-
tion or the policy, or both. The final issue that matters for
the choice of algorithm is the type of action space, hence
the distinction between the discrete and the continuous
case.
We used two different RL agents to solve both our prob-
lems, which belong to two families of algorithms: value-
based and policy-based algorithms, respectively.

Value-based: DQN Agent

Considering all these aspects, we chose the Deep Q-
Learning algorithm (Mnih et al. [3]) as a first solution
for the scheduling problem related to the Binary KP. It
approximates the Q-value function using a deep Q-net
(DQN), consisting of an input layer proportional to the
observation space, a certain number of hidden layers, and
a linear output layer with one unit for each discrete ac-
tion.
When introducing function approximation and neural
networks in particular, we need to have a loss to opti-
mize. For our implementation, we used the mean-squared
TD-error, i.e., the mean squared error of the predicted Q-
value and the target Q-value:

Loss = E

[(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)2
]

(2)

The core idea behind the DQN algorithm is a tech-
nique called experience replay (Mnih et al. [2]), where
the agent’s experience is stored at each time step et =
(st, at, rt, st+1). During the inner loop of the algorithm,
Q-learning updates, or minibatch updates, are applied
to experience samples drawn randomly from the pool
of stored samples. After performing the experience re-
play, the agent selects and executes an action according
to an epsilon-greedy policy. Each step of the experience



is potentially used in many weight updates, allowing for
greater data efficiency. In addition, randomizing the sam-
ples breaks their correlations and then reduces the vari-
ance of the updates. The second key idea behind this al-
gorithm is the use of a separate network for estimating
the target. This target network has the same architecture
as the function approximator but with frozen parameters
updated everyN iterations, leading to a more stable train-
ing. We used the DQN algorithm to solve the schedul-
ing problem when the overall content of the packets is
known. We trained the agent for many episodes to gener-
ate a different set of packets and downlink operations and
generalize as much as possible when the agent faces new
data to schedule.

Policy-based: PPO Agent

The DQN is an action-value method cause it learns the
values of actions and then selects actions based on its
estimated action values; its policy would not even exist
without the action-value estimates. Policy-based methods
instead learn a parameterized policy that can select ac-
tions without consulting a value function. A value func-
tion may still be used to learn the policy parameter but
is not required for action selection: the policy parameters
are learned based on the gradient of some scalar perfor-
mance measure with respect to the policy parameter. All
methods that follow this general schema are called policy
gradient methods, whether or not they also learn an ap-
proximate value function. Methods that learn approxima-
tions to both policy and value functions are called actor-
critic methods, where ’actor’ refers to the learned policy,
and ’critic’ refers to the learned value function, usually
a state-value function. There are some main advantages
when using a parameterized policy that has to be learned:

• Policy-based methods have better convergence
properties.

• Policy gradients are more effective in high-
dimensional action spaces (so we can use them in
continuous action spaces).

• Policy gradients can learn stochastic policies due to
the policy’s definition, where it outputs a probability
distribution over actions.

Considering the online scheduling problem and the abil-
ity of policy-gradient algorithms to learn stochastic pol-
icy, we train a PPO (Proximal Policy Optimization,
Schulman et al. [6]) agent to solve this problem. It is
an actor-critic algorithm, where the actor is responsible
for selecting the actions, and the critic network has to
criticizes the actions taken by the actor (figure 3).

4. SIMULATION RESULTS

In this section, numerical results are presented to evalu-
ate the performance of the proposed RL algorithms. All

Figure 3. The actor-critic architecture

simulation results were obtained with Python and Ten-
sorflow. For the environment implementation, we used
Openai-Gym (Brockman et al. [7]), one of the most com-
mon toolkits for reinforcement learning research, which
provides an interface that is compatible with almost all
RL frameworks. Moreover, we compared the proposed
algorithms with some baselines.

4.1. Simulation Setting

The environment setup is very similar for both the prob-
lems we solved. For the offline case, the buffer containing
the data to be scheduled for downlink is set to 100 pack-
ets with random values for length and priority. The down-
link capacity is a random value between two extremes (in
terms of the quantity of data the satellite can download to
the ground). In the online version, there is a window of
50 randomly generated packets in an online fashion.

Concerning the learning algorithm, the same architecture
was used for all agent networks. It consists of 2 hid-
den layers with 64 units each. The rectified linear unit
(ReLU) was used as the activation function. The discount
rate γ was set to 0.99 during the training. The learning
rate was set to 3x10−4 , and the Adam optimizer was
used for gradient descent.

4.2. Performance Evaluation

We used some baselines to do some benchmarks for eval-
uating the performances of the trained agents in solv-
ing both tasks. In the offline case, we used a sim-
ple heuristic algorithm that schedules packets after sort-
ing them with respect to their priority. In addition, we



(a) Sum of downloaded priority (b) Percentage of used downlink capacity

Figure 4. DQN-Baseline comparison in the offline case

Figure 5. Average of results after 50 runs with 100
episode each in the offline case. The upper bound rep-
resents the optimal solution found by the dynamic pro-
gramming approach.

used an optimal solution based on dynamic program-
ming to have a measure of the maximum value of pri-
ority that can be obtained within a specific sequence of
packets. The comparison was made by comparing the
different agents/algorithms on the same data buffer in
each episode. Figure 4 shows the results after running the
DQN agent and the baseline after ten episodes. We can
see that both exploit almost all of the downlink capacity,
but in terms of total downloaded priority, the DQN agent
performs quite better.

Figure 5 instead shows the average results over 50 runs
with 100 episodes each. We can notice how the DQN
agent approaches the optimal value found by the dynamic
programming solution, bearing in mind that its recur-
sive structure took a lot of computational time in some
episodes to find a solution.

In the online version of the problem, we didn’t have a
greedy solution to compare with. So we used one of the
most simply scheduling algorithms, a First Come First
Service approach. Figure 6 shows the results after run-

Figure 6. PPO-Baseline comparison, online case

ning the DQN agent and the baseline after ten episodes.
We can notice how the PPO agent beats the baseline al-
gorithm in each episode. Again, we averaged the results
over 50 runs with 100 episodes each to have a more ro-
bust benchmark (Figure 6).

4.3. Deployment on embedded devices

The deployment process requires the adaptation of the
original agent networks for the target embedded device.
This is commonly accomplished by using Neural Net-
work optimization framework such as Tensorflow Lite or
Intel Openvino.

The commonly used pipeline usually involve many steps.
Tensorflow APIs are generating, during the training pro-
cess, a model (in the form of a single or multiple files)
composed by an architecture specification file and an as-
sociated weights file. This model file is than optimized
using a TFLite converter which reduces the model mem-
ory footprint and inference time (by performing network
quantization [5] and connection pruning).



Figure 7. Average of results after 50 runs with 100
episode each, where the PPO agent is compared with the
FCFS approach in the online case.

A first version of an optimized tflite version of the neu-
ral network has been produced. The estimated footprint
on memory is lower than 100KB and the low number of
model parameters is compatible with the deployment on
multipurpose chips such as CPU/micro-controllers. This
induces us to predict that the model will be compatible
with space-grade ready devices. In future we will par-
ticularly focus our research on deployment on embedded
devices.

5. CONCLUSIONS AND FUTURE WORK

This paper proposes an RL solution to the packet schedul-
ing problem in downlink operations, where the goal is to
maximize the throughput and the efficiency of such op-
erations. We formalize the optimization problem as an
MDP model. Value-based and policy-based deep rein-
forcement learning algorithms are applied to solve both
offline and online cases. We demonstrate the effective
ability of RL agents to learn how to solve such optimiza-
tion problems.

Future improvements will consist in adding complexity
to this scenario, for example, by adding some additional
randomness to the downlink operations. Finally, as pos-
sible next steps, we will evaluate the application of the
RL solutions to different types of optimization problems.
Specifically, the online solution to the problem seems to
be promising.

Finally, we plan to explore the deployment of the model
on an embedded architecture, simulating a more realistic
operational scenario
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