

autonomous space missions.

14-17 June 2021 | European workshop on On-Board Data Processing

Scheduling Downlink Operations using Reinforcement Learning

Luca Romanelli¹ (Speaker), Alessandro Benetton¹, Mattia Varile¹

¹AIKO Autonomous Space Missions, Torino, Italy

European Workshop on On-Board Data Processing

Summary

- AIKO objective
- Problem definition and RL approach
- Design choices
- Results & future work

Applying RL in space

- Our goal was to design and train an agent to make decisions autonomously without telling it how to do so
 - This is Reinforcement Learning
- 2 key questions:
 - What kind of decisions does the agent make?
 - This defines the goal of the RL agent
 - How can the agent do this?
 - Through interaction with the environment

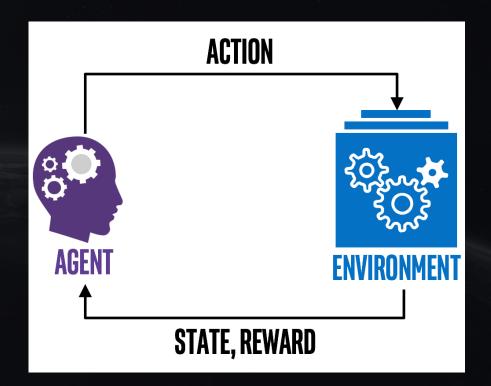
What is the goal?

- Goal: optimize the throughput and the efficiency of downlink operations
- What does the agent have to learn?
 - How to schedule satellite packets that need to be downloaded to ground to improve the outcome based on:
 - The type of data being downloaded
 - The resource utilization
 - The downlink capacity

How can the agent learn?

- The agent will learn through interaction with the environment
- The interaction is modeled as a Markov Decision Process
 - State space
 - Action space
 - Reward function

- The environment can be the real world or a simulator
 - Before we deploy a learning agent in space, we need to do experiments and train the agent in a simulation environment



The scheduling task

- The task is though as episodic
 - Each episode consists of scheduling packets stored in the buffer to be

downloaded within a downlink operation

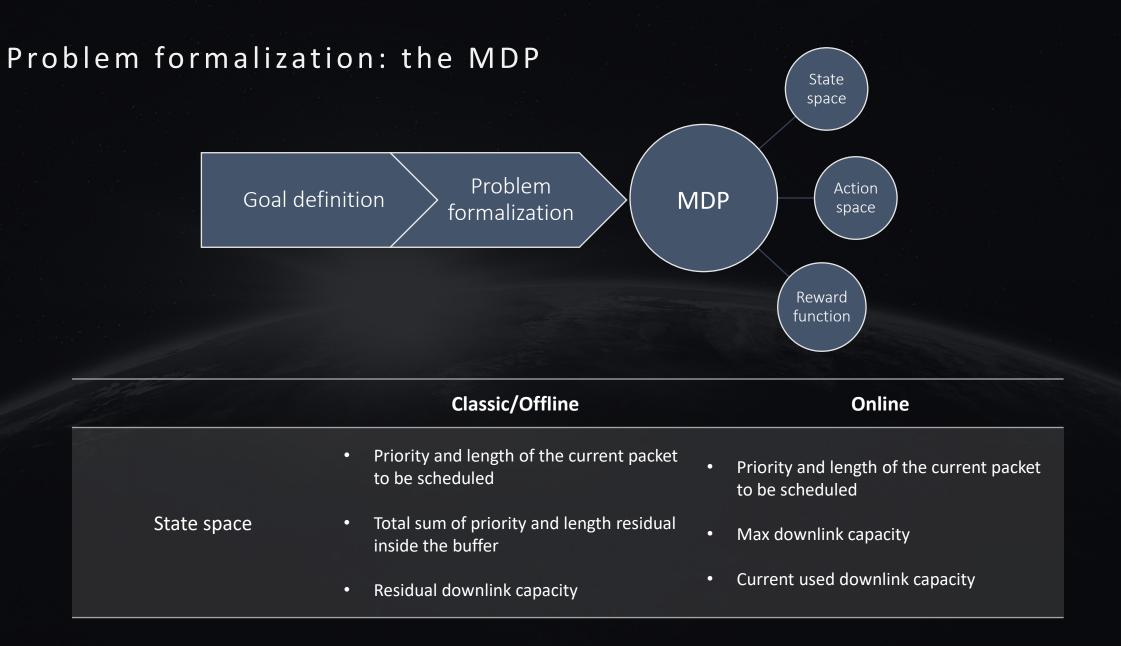
• Agent-Environment interaction:



COP: the knapsack problem

- Given a set of items determine the number of each item to include in a collection so that:
 - the total weight is less than or equal to a given limit
 - the total value is as large as possible

- The online version of the problem is more challenging due to the uncertainty with which the items arrive
 - The problem is stochastic

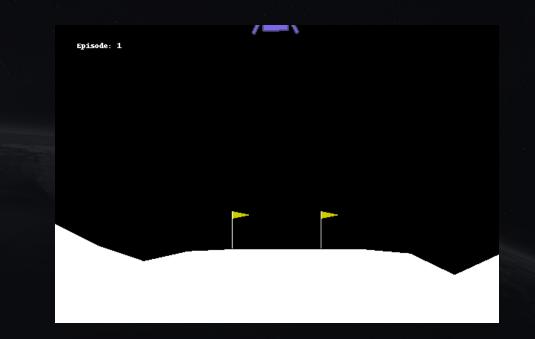


Problem formalization: the MDP

	Classic/Offline	Online
Action space	 Schedule or not schedule the current packet of the sequence 	 Accept or reject the current packet available
Reward function	 A positive reward proportional to the priority of the packet when it's scheduled A negative reward at the end of the episode proportional to the residual downlink capacity 	 A positive reward proportional to the priority of the packet when it's scheduled A negative reward when the agent schedules a packet that doesn't fit the current downlink capacity

Environment implementation

- Based on the Openai-gym interface
 - The most common toolkit for training RL algorithms
 - Almost all RL frameworks are compatible with this interface
- It consists of three main blocks
 - *init*: the initialization of the environment
 - *reset:* the beginning of an episode
 - Responsible for returning the first observation of the environment
 - *step*: the update of the environment after an agent's action
 - Responsible for returning the next state and reward to the agent



Algorithm choice

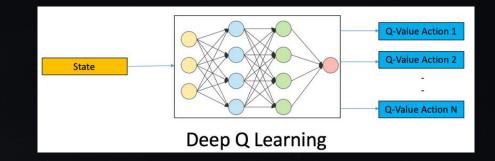
- What to learn?
 - The value function (Q-function)
 - value-based algorithms
 - The policy
 - policy-based algorithms
 - Both the policy and the value function
 - actor-critic algorithms

Value fune	ction Policy	
Value-based	Actor Critic Policy-based)

- Function approximation
 - Deep Neural Networks provide a powerful tool to generalize over new unseen observations

DQN agent

- Approximates the Q-value function using a deep Q-network
 - The number of input and output nodes are related to the
 - state space and the action space



- Experience replay technique
 - The agent's experience is stored inside a replay memory
 - and sampled randomly during the training

PPO agent

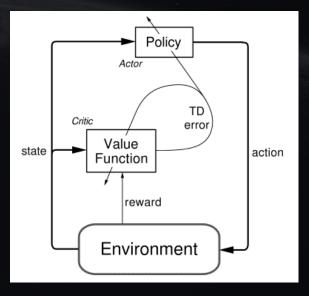
Policy gradient algorithm

- It aims at modelling and optimizing the policy directly
- It can learn stochastic policy

Actor-Critic method

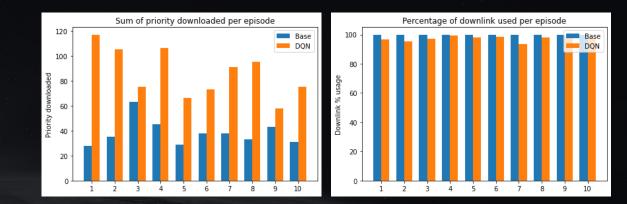
۲

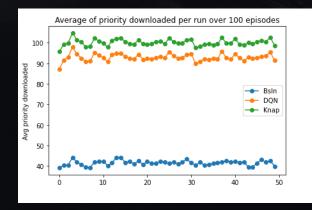
- Actor network
 - Parametrized policy which select actions
- Critic network
 - Approximated value function that criticizes the actions taken by the actor



Simulation results – Offline problem

- Environment setup
 - Buffer of 100 packets to be downloaded with random values for length and priority
 - Random value of the downlink capacity in each episode
- DQN hyperparameters
 - 2 hidden layers with 64 units each
 - Mean squared TD-error
- Comparison with dynamic programming approach
 - 50 runs with 100 episodes each



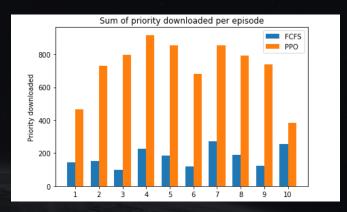


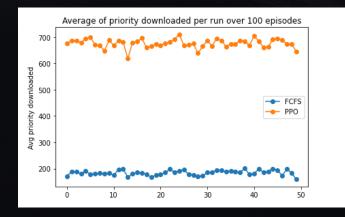
Simulation results – Online problem

Environment setup

- Windows of 50 packets which are generated online with random values for length and priority
- Random value of the downlink capacity in each episode
- PPO hyperparameters
 - Same network architecture for both the actor and the critic
 - 2 hidden layers with 64 units each

Average results over 50 runs with 100 episodes each





Future improvements and next steps

Improvements:

- Add complexity to the scenario
 - e.g. add stochasticity to the downlink operations

- Next steps:
 - Apply the RL solution to different optimization problems

