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ABSTRACT 

In this paper we present an ad-hoc architecture for on-

board deep neural networks (DNN) inference 

implemented on a radiation-tolerant FPGA, creating 

building blocks which can be used for different DNN 

architectures, running on platforms with different 

amounts of resources and covering different 

requirements. The problem analyzed is based on an 

autonomous descent and landing scenario on the Moon, 

trying to compare it against traditional techniques. The 

implementation of the Deep Learning (DL) algorithm is 

focused on the extraction of features from navigation 

camera images. The proposed solution on FPGA allows 

for a reduced power consumption while maximizing the 

execution performance, as opposed to many on-ground 

solutions. A space-representative demonstrator has been 

developed to validate the solution. 

Additionally, we present another approach to running 

inference of a DNN model on-board space 

representative avionics. In this case, it is based on using 

the specific Computer Vision and Artificial Intelligence 

(CVAI) accelerator Myriad 2 as the processing element 

instead of an FPGA. We describe the avionics 

architecture and the AI concept for two scenarios: crater 

localization on the Moon and specific patches detection 

on asteroid images. 

1. Introduction 

The majority of the embedded systems have been 

designed using linear algebra and linearization, but as 

the universe has non-linear behavior, they impose 

constraints and limitations on the potential current 

technology. This is true also for the space industry, 

where more demanding space missions could greatly 

benefit from the application of non-linear systems, 

specifically DL and DNNs. 

The autonomous descent and landing on the lunar 

surface based on visual based systems is a complex 

challenge that can ensure pin-point landing. These 

Absolute Navigation systems are able to estimate a 

spacecraft position based on a previously generated 

landmark database and landmarks extracted from the 

navigation camera images using real time landmarks 

crater identification. 

In this paper a more modern approach based on artificial 

intelligence (AI) solution is presented which benefits 

from the advantages of FPGA implementations. 

The NN-VISNAV and AITAG are vision based 

navigation systems based on AI that can use common 

FPGA implementation. The NN-VISNAV is focused on 

descent and landing scenarios focused on the South Pole 

of the Moon. Two different landing points have been 

selected Schrödinger basin and Shackleton crater. The 

neural network is trained using different datasets of 

images which are generated in different conditions, like: 

illumination conditions, simulated image blur, 

navigation camera exposure and lens distortion.  

In this paper we present two different approaches of 

how to apply inference of DNNs on on-board avionic 

platforms. This work stems from projects NN-VISNAV 

and AITAG developed in GMV for ESA.  

We present the approaches taken in this two projects, 

where the inference of a DNN is executed on space-

representative avionics. One of them uses an FPGA 

while the other uses an AI accelerator, the Myriad 2. 

Two different visual-based scenarios are analyzed. 

Autonomous descent and landing on lunar surface and 

specific patches detection on asteroid observation. The 

FPGA-based approach covers the former while the AI 

accelerator covers both, while only partially the former. 

We will firstly present the FPGA-based approach used 

in the NN-VISNAV project. A comparison between the 

conventional methods and the AI-based approach is 



 

presented. The FPGA design is described in detail. 

Finally the validation is presented. 

The AI accelerator-based approach is described with 

fewer depth, as the activity is still ongoing. The AI 

concept is described and the demonstrator avionics are 

presented afterwards. 

2. Absolute navigation for descent and landing on 

the Moon surface 

Visual-based autonomous descent and landing on lunar 

surface are a complex challenge. Systems capable of 

solving it are called Absolute Navigation systems, and 

can ensure pin point landing, estimating spacecraft 

position based on a previously generated landmark 

database. 

The images are generated using planet and asteroid 

natural scene generation utility (PANGU), [11]. High 

definition models of the target surface have been 

developed using PANGU and are used to generate 

representative synthetic images. 

 

2.1. Conventional vs AI-based approach 

Previous work on using Absolute Navigation system 

conventional approach, presented in [1] and [2], showed 

a considerable increase in landing accuracy, from 

kilometers to a few hundreds of meters landing 

accuracy. The Absolute Navigation systems developed 

by GMV, in ESA – ANTARES and PILOT-B+, is based 

on recognition and matching of craters (as 

representative landmarks) on the lunars surface. Craters 

are excellent landmarks because can be found in large 

numbers with different size. The presence of different 

crates sizes has a big impact in the design of the 

AbsNav system which is targeting different craters’ size 

at different altitudes, bigger craters at high altitude and 

smaller craters at low altitudes. Furthermore, the craters 

have rotation and illumination invariance properties 

which contribute substantially to the robustness of the 

Absolute Navigation system. 

The conventional Absolute Navigation system is 

composed by two main parts: off-line part and on-line 

part. The off-line part is mainly focused on extraction of 

landmark databases which can be built in an automatic 

way using specially developed SW or manually using 

human interaction. In this process Digital Elevation 

Models (DEMs) or geo-referenced images can be used 

to extract the lunar landmarks to generate the database. 

The on-line part is mainly focused on on-board 

computation which ensures Real Time detection and 

matching of landmarks extracted from the images 

captured by navigation camera. During this process the 

craters are extracted from the images using optimized 

image processing algorithms followed by an estimation 

in shape and size using ellipse approximation. The last 

step is the matching procedure where the online 

extracted craters are matched with the ones existing in 

the landmark database. The matched set can be used to 

compute the absolute position in camera frame and a 

navigation filter can use the absolute navigation output 

together with on-board sensor measurement to provide a 

complete estimation of spacecraft’s states. The 

conventional Absolute Navigation system approach is 

presented in Figure 1. 

 

 

Figure 1:  Conventional Absolute Navigation system 

architecture 

The on-line part is composed by several functionalities 

designed to extract and match lunar craters in order to 

estimate spacecraft states: Landmarks Extraction, 

Database filtering & Database 2D projection, Landmark 

Matching, Landmark Check, Position estimation and 

Navigation filter. The Absolute Navigation system is 

working with 1024 pixel squared image. The Landmark 

Extraction is using the navigation image to extract 

craters and is composed by three stages: border 

detection where edge detection and crater rim detection 

is selected, rim grouping where crater curvature check 

and crater border coupling is performed and ellipse 

fitting where the size and shape of the crater is 

approximated.  

The Database filtering & Database 2D projection is 

using the on-board Landmark database and estimated 

spacecraft states to select from the database the craters 

which are predicted to be seen in the camera FoV. 

Afterwards, the selected craters are processed by 

Database 2D projection algorithm which projects the 

craters in the image frame based on spacecraft’s 

estimated attitude and position. 

The Landmark matching functionality is performing the 

point matching by using the craters extracted from the 

image (Landmarks extraction) and the projected craters 

in image frame from the database (Database 2D 

projection). The output of Landmark matching is a list 

of crater pairs (the craters extracted from the image and 

its matches from the database) which are matched 



 

during this procedure. The Landmark check is in charge 

to eliminate false matches based on proximity criteria (if 

near the matched pair exists other craters, relatively 

close to this pair, the match is discarded).  The Position 

estimation is using attitude information knowledge, 

landmark database and matched craters to compute the 

3D absolute position estimation. The navigation filter is 

a Linear Kalman Filter that integrates different sensors 

measurements in order to obtain precise estimated 

spacecraft’s states.  

In ESA project, NN-VISNAV, a new modern technique 

based on AI is implemented to perform visual 

navigation. The NN-VISNAV project is developed in 

collaboration with UPB-CCAS and implies to provide a 

DNN complete solution, starting with research and SW 

implementation until HW implementation on space-

graded FPGAs. The preliminary evaluation of neural 

network solution and implementation is performed in 

TensorFlow and neural network training is performed 

using 2048 pixel squared image. The HW 

implementation of the neural network is performed by 

GMV.  

 

Figure 2: AI-based Absolute Navigation architecture 

The Crater Edge Detection is designed using neural 

network techniques, trained with perturbed and non-

perturbed data (in this case images) with the scope to 

perform crater edge detection. The crater frame position 

is a SW function that identifies and approximate craters 

shape and position in the image by using the extracted 

edges. The crater 2D projection is in charge to select 

and project crates from database in the image frame by 

using the spacecraft estimates states, similar as in the 

classical Absolute Navigation system. Then Crater 

Frame Matching is in charge to perform the matching of 

the craters detected in image frame with the ones from 

crater database. The Spacecraft Position Prediction 

function is in charge to estimate spacecraft estimated 

states. The presented approach for AI based Absolute 

navigation assume a HW-SW co-design approach, 

where Crater Edge Detection neural network is 

implemented on dedicated FPGA to increase the 

execution performances and the rest of the 

functionalities are implemented on a space graded 

processor. 

2.2. DNN inference on FPGA 

The avionics for this approach is formed of the main 

OBC, where images from an on-board optical device are 

collected. These images are then to be subjected to 

inference using a DNN model, previously trained 

offline. The execution of the inference processing is 

carried out in an FPGA, leveraging its capabilities to 

parallelize multiple processing operations and its higher 

power efficiency with respect to other solutions such as 

CPUs or GPUs. In this way, the OBC acts as the client 

which requests the execution of the inference of an 

input image to the FPGA, which acts as the server. 

The interface between the OBC and the FPGA is built 

on an Ethernet connection, using a tailored protocol 

working over raw Ethernet packets, i.e. the network, 

transport and application layers are custom. The 

designed protocol supports for packet fragmentation, 

and multi-packet acknowledgment. The application 

layer is based on a series of commands that enable the 

client to send images, request execution of inference, 

retrieve results from intermediate and final layers, and 

monitor the status of the server. 

In order to generalize to different DNN architectures, 

specific implementations for each type of layer and its 

parameters are described in a Hardware Description 

Language (HDL) and verified. Through 

parameterization these modules can be 

programmatically generated and generic models be 

constructed, as long as they are built up from 

implemented layer types. The sequence of execution 

steps and control signals can be generated offline and 

then be fed to a controller module that internally 

handles the orderly execution of each instruction. 

From a model generated using TensorFlow and Keras, a 

Python library has been generated in order to extract the 

required information: layer types, input and output 

dimensions, weights and biases. This library then 

generates the required inputs for the FPGA 

implementation: scheduling instructions, parameter 

files, and memory distribution. 

A demonstrator of this architecture has been built under 

the NN-VISNAV. The used FPGA board has been the 

Alpha Data SDEV Kit-2, which contains a Xilinx 

Kintex UltraScale KCU060 FPGA, of the same family 

of the radiation tolerant XQRKU060 FPGA. An 

Ethernet expansion module was used to connect the 

board to a workstation, which is used to emulate the 

OBC and the camera. The setup for the testing of the 

demonstrator is shown in Figure 3:. 

 



 

 

Figure 3: Setup of the demonstrator 

In order to ease its use and to abstract the complexity of 

the inner layers, a Python-based command line tool has 

been developed to control the execution of the different 

tests on the demonstrator. A series of commands can be 

used to carry out all the steps necessary to prove the 

functionalities of the system. This includes loading the 

bitstream, loading model parameters, sending query 

images, executing the inference, retrieving results from 

any layer of the model, and monitoring the status of the 

system. 

The U-Net model implemented in the demonstrator 

implements the crater edge detection step of the 

Absolute Navigation. It expects a 2048x2048 8-bit 

pixels input image, and generates a 2048x2048 pixels 

output feature map. It contains 30 layers of different 

types (Conv2D, DepthwiseConv2D, MaxPool2D, 

Concatenation) and with different activations (ReLu and 

sigmoid). 

2.3. FPGA design 

Our design is based on a library of in-house VHDL 

modules, which allow for a modular implementation of 

generic DNN architectures. 

This modular solution eases the adaptation to different 

FPGA platforms with different amounts of resources, as 

it allows for trade-offs in the utilization of specific 

resources such as BRAMs and DSPs, where the 

bottleneck could vary from platform to platform. 

 

Figure 4: Avionics diagram 

The communication with the client is handled by an 

Ethernet MAC implementation and a system controller. 

The system controller continuously monitors the status 

of the interface, and manages both the retrieving of 

incoming packages and the transmission of outbound 

packets. The full application layer is also managed by 

the system controller, which translates incoming 

commands from clients into specific actions within the 

design and generates and transmits the proper response 

back. This involves, among others, the control of the 

data flow between the DDR and the outside world. It 

manages the fragmentation of transmission packets and 

the addressing and redirection of reception packets. It 

also takes care of the acknowledge mechanism by which 

multiple packets can be sent in a burst and an 

acknowledge for each of them is expected from the 

receiving side, otherwise having to re-transmit the 

unacknowledged packets. 

2.3.1. DNN implementation 

The architecture of the DNN is formed of two parts. The 

controller and the processing pipeline. The controller 

manages the accesses to memory, the sequence of steps 

necessary for the execution and the interface with the 

outside world. The processing pipelines contain the 

main processing elements, the Processing Units (PU), 

which are the elements that effectively execute the 

arithmetic operations that constitute each DNN layer. 

The architecture is configurable and adaptable to the 

available resources as well as to the characteristics of 

the DNN, enabling a trade-off between resources, 

performance, and power consumption. 



 

 

Figure 5: Block diagram of the DNN 

The control of the DNN is exercised by several Finite 

State Machines (FSM). In this way, the system handles 

accesses to memory, in order to read parameters and 

inputs and to write outputs of each layer. It is also 

responsible for activating the PUs required for each 

layer, and acts as the interface for controlling and 

monitoring the status of the DNN implementation from 

the outside. 

The controller has a scheduler ROM, whose content is 

loaded in the initialization phase with the required 

instruction sequence to control the execution of the 

inference. This way, the instructions are fetched as 

required, traversing the sequence of commands once for 

every input image. 

The memory distribution made is designed so that there 

is no data overlap in memory. Each layer of the DNN 

has an allocated memory block in which to store the 

output tensors. Subsequent layers may access blocks of 

their previous layers, and this process is repeated 

sequentially until all layers are traversed. 

The DNN parameters have their own allocated memory 

block, and are loaded into memory in the initialization 

phase. The used memory layout for weights is 

CoutCinHW, and CHW for intermediate feature maps, 

where C is the channel dimension, W the width, H the 

height, and Cin and Cout the input and output channel 

dimension of weights. Biases are interleaved with the 

weights around the Cout dimension. 

The PUs in charge of performing the processing are 

composed of the following elements: an Upsampling 

block, a MaxPooling block, Convolution blocks and 

BRAM memory blocks that act as input caches. A PU 

can only perform one type of operation at a time, 

although in the case of convolutions it can 

simultaneously use multiple blocks on smaller input 

images. 

 

Figure 6: Block diagram of the Processing Unit 

As convolution requires in general multiple input pixels 

per clock cycle, a large number of memory blocks are 

needed in the PU. The size required for these memories 

is determined by the maximum size of the channels and 

can be adjusted depending on the DNN to be 

implemented. Similarly the number of PUs determines 

the number of channels that can be calculated 

simultaneously and can also be adjusted if the DNN to 

be implemented is different. 

Inside the DNN but external to the PUs there are 

multiple DSPs, placed by levels in an invert pyramid, 

which add the results of the convolutions and the 

corresponding bias until obtaining the result. This value 

may then be optionally passed to an activation function 

(ReLu or sigmoid). For the Xilinx UltraScale FPGA 

family, these DSPs are capable of performing 

multiplications of up to 27x18 bits, giving an output of 

48 bits. 

The internal representation of values in the FPGA is 16 

bits fixed point. The number of integer and decimal 

positions to be used needs to be calculated using 

representative images with the trained model. In order 

to limit the precision loss do to the use of fixed point 

arithmetic, the whole set of observed values is 

inspected. The most significant bit required to represent 

the values observed in each layer determines the 16 bits 

that are used in the FPGA. 

2.4. AI HW validation 

2.4.1. NN-VISNAV Validation  

The DNN for visual based navigation is implemented in 

VHDL which involves transformation in fixed point 

arithmetic. During fixed point arithmetic transformation 

process the neural network is transformed from 32 bits 

floating point to 16 bits fixed point, which can cause 

losses in edge detection accuracy. An extensive 

evaluation validation of the neural network VHDL 

implementation is performed by evaluating the response 

at edge level until final results of the absolute 

navigation system. The validation of the HW 

implementation results is performed with respect to SW 

implementation results. The evaluation is performed 



 

using the nominal scenario which involves descent and 

landing in Shackleton crater. For validation purposes the 

SW results of the neural network are considered to be 

the reference. 

The Crater Edge Detection neural network provides a 

mask of the crater edges that are present in the image 

The HW implementation results are evaluated at pixel 

level by comparing the edges in both SW and HW 

implementations. They are proved to match for 98.6% 

of the pixels, which ensures high degree of result 

similarity. The crater edges extracted using the HW 

neural network implementation are used to run the 

Crater Frame Position and the Crater Frame Position in 

order to evaluate the overall results of the AI based 

Absolute navigation system. The estimated center and 

radius of the craters error with respect to SW results 

were found to be subpixel. 

Table 2.4.1-1 

 Center 

detection 

precision 

on x axis 

Center 

detection 

precision 

on y axis 

Radius 

detection 

precision 

Mean 0.83 0.75 0.29 

 

The number of common matches is an important metric 

to be evaluate in order to fully validate the HW 

implementation. Similar number of matches are seen 

over the entire nominal scenario execution: 

Table 2.4.1-2 

 SW Matches HW Matches 

Mean 171.74 171.41 

 

The following graph illustrate the comparison between 

the crater matches of the SW implementation vs HW 

implementation. As can be observed the output between 

both implementation is very similar.  

 

Figure 7: Number of matched craters validation, SW vs 

HW 

 

The output of the Absolute Navigation system based on 

the DNN HW implementation is presented in Figure 8. 

 
Figure 8: AI based Absolute Navigation HW results, top 

left corner zoomed area 

In Figure 8 the red dot represents the crater estimated 

center and the blue circle is the size of the crater using 

the estimated radius.  

 

2.4.1.1. Crater matching and localization on Moon 

surface 

The objective of this scenario is to use DNNs to be able 

to identify and locate craters in visual images of the 

Moon in descent and landing trajectories. This approach 

aims to produce a list of detected craters as well as their 

location and apparent size using a single DNN. This 

may result in an improvement over other approaches 

that make use of conventional methods or even other AI 

based systems that limit their DNN to predicting a mask 

of crater rims. If this approach produces adequate 

performance results, it could well substitute many 

iterative steps that were conventionally executed on SW 

2.4.2. AITAG Validation  

Training DNNs requires extensive amounts of images. 

Applicable space images are scarce and their labelling is 

costly, so for the AITAG scenarios, training will be 

done using synthetic images. Available real images will 

be used in the validation phase however, so once 

finished this activity should provide results on how well 

the training on synthetic images ports to real imagery. 



 

 

Figure 9: Avionics architecture using the Myriad 2 

CVAI accelerator 

2.4.2.1. DNN inference on AI accelerator 

The second approach to executing inference of DNNs 

on on-board avionics is the use of specific AI 

accelerators.  The avionics in this case are formed of the 

accelerator component that implements the DNN, and 

the OBC which is in charge of configuring the 

accelerator, feeding the images, and retrieving the 

results. 

In the AITAG activity, a demonstrator is being built in 

order to test this approach. The selected accelerator is 

the UB0100 CubeSat Board from Ubotica. It is based 

around the Intel Movidius Myriad 2 Vision Processing 

Unit (VPU). They are designed for application to image 

processing and NN inference. This VPU is designed for 

use in low-power edge applications providing in excess 

of 1 TOPs of compute power. This VPUs have also 

been characterized for their use in space. 

The OBC is implemented on a Xilinx KCU105 board, 

which contains a Kintex UltraScale KCU040. This 

FPGA is based on the same architecture as the radiation 

tolerant XQRKU060. A LEON 5 softcore 

microprocessor is implemented on the FPGA fabric and 

is the responsible of managing the interface to the 

external world, configuring and monitoring the 

accelerator, and providing the images as well as 

retrieving the results. 

2.4.2.2. Specific patches detection on asteroid images 

The goal of the second scenario analyzed in the AITAG 

project, the asteroid scenario, is to be able to detect 

selected visual patches on images of an asteroid. This 

scenario is based on the HERA spacecraft of the ESA-

NASA AIDA mission. The spacecraft will measure the 

impact and the asteroid deflection on the Didymos 

double asteroid made by the DART impactor. It will 

enable characterization of the volume and surface 

properties with different instruments, including a 

camera, done on successive hyperbolic trajectories. 

On the first stages of the observation, camera images are 

sent to ground, where scientists can decide which 

patches of the surface have more scientific interest. The 

goal of the scenario is to be able to detect in real time 

when one of these patches of interest appears in the 

images from the camera. For that purpose a DNN-based 

system has been designed and is currently being 

developed. This DNN system would enable the 

autonomous orientation of the camera towards these 

patches, and it would also reduce the required downlink 

throughput for camera images, as it would enable to 

filter the images based on their content. 

A conventional approach to tackle this problem would 

require characterizing one or multiple specific features 

of the patch, some kind of descriptor, and then detecting 

this same features on the query images. The proposed 

DNN design relies on a Siamese network to compare 

and measure the similarity of the reference patch and 

the query image from the camera. Two parallel base 

architectures generate a feature map for each the 

reference patch and the query image, which acts as a 

descriptor. A distance function between descriptors is 

used to obtain a similarity metric between them. 

The system is trained with a triplet loss function, which 

aims to reduce the distance between equivalent patches 

and to increase the distance between unrelated patches. 

In this way, the system generates a similarity matrix for 

each image where a threshold value may be applied to 

the maximum similarity values to detect the reference 

patch. 

3. Conclusions 

This paper presented a modern AI based Absolute 

Navigation in a HW-SW co-design where the most 

computation intensive processing is implemented in a 

dedicated FPGA. The performance is boosted by taking 

advantage of the characteristic data flow pipelining and 

parallelization characteristic of FPGAs. The edge 

detection is the best candidate taking into consideration 

that large images of 2048x2048 pixels are used to 

extract navigation information.  



 

Processing Units are the elements that effectively 

execute the arithmetic operations that constitute each 

DNN. By adjusting the amount and size of its 

components, PUs maximize the flexibility of the design 

for future implementations, enabling tradeoffs between 

utilization of resources and processing speed. Different 

DNNs can be more easily adjusted to fit in different 

FPGA platforms and to optimize the utilization of the 

resources available. 

The DNN from the NN-VISNAV scenario is fully 

implemented in VHDL and contains 30 layers. This 

involves the utilization of approximately 96% of the 

critical component, the BRAMs. 

The HW implementation of a DNN offer subpixel errors 

on center and radius estimation with respect to the SW 

implementation.  Also the output of common matches is 

similar over the entire nominal scenario execution. 
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