Boosting Autonomous Navigation solution based on Deep Learning using new rad-tol Kintex Ultrascale FPGA

European Workshop on On-Board Data Processing Teleconference 14th of June 2021

Dragos-Georgel Gogu Avionics Engineer GMV Innovating Solutions SRL Contact: dgogu@gmv.com

Contents

- 1 Context
- 2 AI Concept Design
- 3 Avionics Architecture
- 4 FPGA design
- 5 Test results
- 6 Conclusion

Context

Conventional Approach $\boldsymbol{\mathsf{VS}}$ AI Based Approach

Moon Surface Asteroid surface

Classical Design

Conventional Absolute Navigation

Off-line:

- DEM & Geo Referenced Images

Landmark extraction

-Generation and Validation of the Landmark database

On-line:

- Landmark extraction from navigation image
- Landmark matching with data base
- S/C states estimation using matched landmarks

AI Absolute Navigation Concept Design

- Crater Edge Extraction based on Deep learning NN
- Deep Learning NN trained with different image datasets
- Trained NN use to extract the Landmarks on testing scenario
- NN implemented in dedicated FPGA will provide the edges detected in the image
- HW/SW co-design used to run Crater Frame Positon and Crater Frame Matching

AI Absolute Navigation Concept Design AITAG

DNNs

-

Patch matching on asteroid images concept design

Matching reference patch within images from the camera

Potential improvements:

- Autonomous pinpointing of camera
- Filtering downlink of camera images, reducing throughput

Based on using DNN that calculates similarity score between patch camera and subimage in query image

Detected patch

FPGA Firmware Development

Convolution2D

- Network Parameters are called filters or kernels _
- Filters are generated in the training process -
- Applications in image and video recognition, recommender systems, image classification, medical image analysis
- Simple arithmetic: dot product between a _ portion of the image and a kernel. Then multiple convolutions are added together to create a single output channel

Max pooling2D module

- Keep the pixel with a higher value from a group a 4 adjacent pixels
- Resolution is reduced by a factor of 2 (4 times less pixels) _
- It is a way of summarize information about an area of pixels _

UpSampling 2D module

- Nearest Neighbor Scaling
- Duplicates input pixels vertically & horizontally

Input: 2 x 2

1 2

3 4

Output: 4 x 4

© 2021 GMV Property – All rights reserved

FPGA Design

Controller

- Finite State Machine
- Scheduler ROM
- Write/Read from DRAM
- Retrieval of parameters from DRAM
- Store and retrieval of intermediate layer results

Processing pipeline

- Processing Units
- DSPs inverse pyramid
- Output buffer

FPGA Design

- Flexible design
- Possibility of trading off utilization of resources for speed
- More convolution blocks for improved speed
- Fewer convolution blocks for fewer utilization of resources
- More cache memory blocks for bigger feature maps capabilities

Avionics Architecture

FPGA-based acceleration of the DNN OBC (client) + FPGA (inference server)

Ethernet connection

Custom protocol over raw Ethernet packets Support for packet fragmentation and multi-packet acknowledge

Specific VHDL modules for each layer type Parameterized

Offline generation of schedule instructions

Avionics Architecture - Demonstrator

Alpha DEV Kit 2 Kintex UltraScale KCU060

Python command line interface

- loading the bitstream
- loading model parameters
- sending query images
- executing the inference
- retrieving results from any layer of the model
- monitoring the status of the system

Avionics Architecture

Moon Scenario

 To implement the pre trained neural network of the Moon Scenario in HW requires 30 different layers

Layer	Module Name	Processing units used
Layer 1	Convolution 2048x2048	1 PU
Layer 2	Max Pooling 2048x2048	1 PU
Layer 3	Convolution 1024x1024	9 PU
Layer 4	Max Pooling 1024x1024	1 PU
Layer 5	Convolution 512x512	9 PU
Layer 6	Convolution 512x512	10 PU
Layer 7	Max Pooling 512x512	1 PU
Layer 8	Convolution 256x256	10 PU
Layer 9	Convolution 256x256	7 PU
Layer 10	Max Pooling 256x256	1 PU
Layer 11	Convolution 128x128	7 PU
Layer 12	Convolution 128x128	14 PU
Layer 13	Max Pooling 128x128	1 PU
Layer 14	Convolution 64x64	14 PU
Layer 15	Convolution 64x64	14 PU
Layer 16	Up Sampling 64x64	1 PU
Layer 17	Convolution 128x128	14 PU
Layer 18	Convolution 128x128	14 PU
Layer 19	Up Sampling 128x128	1 PU
Layer 20	Convolution 256x256	11 PU
Layer 21	Convolution 256x256	7 PU
Layer 22	Up Sampling 256x256	1 PU
Layer 23	Convolution 512x512	13 PU
Layer 24	Convolution 512x512	10 PU
Layer 25	Up Sampling 512x512	1 PU
Layer 26	Convolution 1024x1024	14 PU
Layer 27	Up Sampling 1024x1024	1 PU
Layer 28	Convolution 2048x2048	14 PU
Layer 29	Convolution 2048x2048	9 PU
Layer 30	Convolution 2048x2048	9 PU

Test results

- Matched craters shows good uniformity displacement in FOV
- Using HW implementation it is possible to detected craters in high number also on low altitude
- Craters radius precision detection error is subpixel with respect to SW implementation
- Mean number of Craters matches between HW and SW is 171 for the entire trajectory

Figure 1: SW edges (left hand image), HW edges (right hand image)

Conclusions

- Crater detection and Crater matching have been implemented and validated by means of HW acceleration technique;
- The HW implementation of the Deep Learning Neural Network on FPGA was similar behavior with respect to the SW implementation;
- The HW implementation is done using fixed16, fixed point arithmetic, and the SW implementation have been developed on float32, floating point arithmetic;
- The HW implementation has subpixel accuracy on center and radius estimation in image frame;
- The AITAG scenario is under development
- The design of the deep learning implementation is done using the Processing Units which maximize the flexibility for future implementations.

Thank you

GMV: Dragos Georgel Gogu Florin Adrian Stancu Antonio Pastor González Daniel Fortún Sánchez David Gonzalez-Arjona

Part of the work presented was carried under a program of, and funded by the European Space Agency

© 2021 GMV Property – All rights reserved