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ABSTRACT 

State-of-the-art optical space instruments are capable of 

producing data rates that considerably exceed the 

available down-link capacities. The potential data rates 

are increasing as the sensor technologies progress. These 

trends require a significant data reduction on-board, most 

appropriately at the source of the data, the instrument. 

Furthermore, the high availability needed to fulfil the 

science goals require a high degree of robustness. In this 

paper we will discuss these trends using the example of 

the architecture of the data processing system of the 

PLATO payload. PLATO (PLAnetary Transits and 

Oscillations of stars) is the third medium (M3) mission in 

ESA’s Cosmic Vision programme. The goal of the 

PLATO mission is to detect terrestrial exoplanets in the 

habitable zone of so-lar-type stars and characterize their 

bulk properties. The PLATO instrument is comprised of 

24 identical refracting telescopes each equipped with 4 

CCDs, plus 2 additional telescopes which aid the space-

craft fine-pointing. Altogether the PLATO payload is 

comprised of over 27 CPU cores, over 30 FPGAs and 6 

Space-Wire Routers. In order to master this complex 

system of interacting software and hardware we use 

standardized protocols, pre-qualified operating systems, 

Model-Based Systems-Engineering tools and techniques, 

and code-generation. We will give an overview of the 

aforementioned tools and techniques, discuss their 

benefits and pitfalls and share the lessons learnt so far in 

the development of the PLATO instrument. 

 

 DESIGN DRIVERS FOR ON-BOARD DATA 

PROCESSING ARCHITECTURES 

Comparing past present and future exo-planet survey 

missions, it can be seen that the key characteristics are all 

following a clear trend towards better performance and 

higher data-rates. The most obvious trend in the 

described mission is the increase in the number of CCDs 

and consequently the number of pixels that could 

potentially be processed and/or downlinked. While 

CoRoT [1][2] and TESS [4] are in low-earth orbits that 

allow high bandwidth downlinks, Kepler [3] and PLATO 

are stationed at the L2 approximately 448900 km from 

earth. This limits the amount of available bandwidth. 

These factors lead to a high demand of on-board data-

reduction. There are three possibilities in data reduction. 

First and most obvious is the fact that only interesting 

parts of the CCDs (targets) are downlinked while the rest 

of the CCD is discarded. The second is compression. All 

the mentioned missions are compressing the pixel data 

before downlink and on-board storage. This compression 

is lossless (or quasi-lossless in the case of Kepler) as 

lossy compression would lead to problems in the further 

processing of the data on-ground. The third and most 

radical solution is to not downlink the pixel data of 

targets at all but instead do the first steps of the scientific 

data analysis already on-board. In the case of exo-planet 

search this is the calculation of the total brightness (flux) 

and the center of brightness (centroid) of stars. As the 

demand for the number of observed targets is increasing 

and the compression of noise (after a first step of taking 

the difference between two consecutive exposures, the 

resulting pixel stream is basically noise) is 

mathematically limited, the only possibility to further 

increase the number of observable targets is the 

implementation of on-board data processing. While a 

typical PLATO target is a 6x6 pixel image (72 bytes) the 

flux of a star is (simplified) essentially a single value of 

4 bytes (some details of this can be found in chapter 3). 

 

Table 1 Key characteristics of past and future missions 

Mission Launch CCDs MPixel Targets Down-link 

CoRoT [1][2] 2006 4 16.78 12k 18 kbps 

Kepler [3] 2008 42+4 94.62 170k N/A 

TESS [4] 2018 16 67.11 >10k N/A 

PLATO ~2026 104+8 1952.6 3600k 5280 kbps 



 

 THE PLATO DATA PROCESSING SYSTEM 

In the following section we will describe how the 

PLATO data processing system (DPS) is designed to deal 

with the challenges described in the previous section. We 

will describe the system architecture, the units 

comprising the DPS and give an overview of the major 

data processing and reduction steps from the CCD read-

out to the mass-memory storage. 

1.1 System architecture 

The PLATO payload is comprised of telescopes, front-

end electronics (FEEs), data processing units (DPUs), 

ancillary electronics units (AEUs) and the instrument 

control unit (ICU). There are 24 “normal” cameras and 

FEEs, nominally operated at a 25 second cadence, and 2 

“fast” cameras and FEEs operated at a 2.5 second 

cadence. 12 normal DPUs are grouped into two main 

electronics units (MEUs) together with two SpaceWire 

routers each, while the two fast DPUs are bundled in the 

fast electronics unit (FEU). The Fast DPUs produce a 

fine-guidance quaternion for the space-craft attitude 

control system and also produce additional science data 

products. Furthermore, the instrument has its own power 

conditioning AEUs for very precise power conditioning 

of the FEEs, highly accurate clock signal distribution to 

the FEEs and synchronized CCD read-out triggering. All 

the interfaces between the units and between the ICU and 

the space-craft are high speed SpaceWire serial links. 

Except the synchronization lines there are no discrete, 

analogue or low speed lines in the instrument. The 

architecture of the PLATO payload is shown in Fig. 1 

below. 

Figure 1 PLATO payload architecture overview [5] 



 

Normal front-end electronics 

Each normal camera is equipped with full-frame 4 CCDs 

and is served by the normal-front-end electronics (N-

FEE). The N-FEE is connected to the DPU through a 

single SpaceWire line and has two main functions. The 

first is of course the control of the CCDs (power 

conditioning, clocking, read-out, analogue-digital 

conversion etc.). The N-FEEs are triggered every 6.5 

seconds to read out a single CCD. This leads to the 

overall cadence of 25 seconds for the normal cameras. 

The second function of the N-FEE is to select the pixels 

of interest for the science products. This function is called 

“windowing”. A window list of up to 150.000 entries can 

be uploaded to each N-FEE. The N-FEE then cuts out the 

selected pixels and only transfers the selected pixels to 

the DPU. The N-FEE can also be commanded to transfer 

full CCD frames for calibration and characterization 

purposes. In this case a full CCD is transferred over two 

6.5 second cycles. The N-FEE also implements other 

calibration functionalities such as reverse-clocking and 

trap-pumping. The N-FEEs are powered and clocked by 

the N-AEUs [6]. 

Normal data processing units 

Each normal data processing unit (N-DPU) controls two 

N-FEEs. It is equipped with a dual-core LEON3 

processor and 256 Mbytes of SDRAM. Each core serves 

an N-FEE and runs an independent instance of the real-

time operating system RTEMS. The main functions of 

the N-DPUs are, to command and configure the N-FEEs, 

to monitor the N-FEE and CCD health, and of course to 

execute the science data processing described in the 

sections below. 6 N-DPUs serving 12 N-FEEs are 

bundled into the MEU and are connected via two 

redundant SpaceWire links with two SpaceWire routers 

inside the MEU. Each router is connected with one side 

of the ICU via a SpaceWire link. The N-DPUs secondary 

voltages are conditioned by the MEU’s internal power 

supply [7]. 

Fast front-end electronics 

Each fast camera is equipped with 4 frame transfer CCDs 

and is served by the fast-front-end electronics (F-FEE). 

The functions of the F-FEE are very similar to the N-

FEEs with the main difference of a 2.5 second trigger 

pulse and a simultaneous read-out of all 4 CCDs. To 

achieve a low latency in the fast processing chain and 

enable the simultaneous readout of all 4 CCDs, the F-

FEEs are connected to the fast data processing units (F-

DPUs) through 4 parallel SpaceWire lines. As the N-

FEEs, the F-FEEs also can be commanded to transfer full 

CCD frames for calibration purposes. In this case the data 

of a single CCD is transmitted over two SpaceWire links 

simultaneously. The F-FEEs are powered and clocked by 

the F-AEU [8].  

Fast data processing units 

Each fast data processing unit (F-DPU) controls a single 

F-FEE. It is equipped with a LEON2 processor, 8 Mbytes 

of SRAM for the on-board software running the real-time 

operating system RTEMS and a companion FPGA which 

is used to reconstruct the windowed pixel data received 

from the F-FEE through the 4 SpaceWire links. The pixel 

data is stored in a dedicated 512 Mbyte of SDRAM. The 

main function of the F-DPUs is to command and 

configure the F-FEEs and to provide fine guidance 

quaternions to the space-craft with a maximum latency of 

3.75 seconds relative to the middle of integration via a 

dedicated SpaceWire line, the timing is shown in Fig. 2 

below. Furthermore, the F-DPUs are also providing 

windowed pixel data as science products. Both F-DPUs 

are bundled into the FEU and are connected via two 

redundant SpaceWire links to the ICU [9]. 

Instrument control unit 

The instrument control unit (ICU) as the name suggests 

is controlling all the units of the instrument itself short of 

the primary power supplies that are controlled by the 

space-craft. It does control however, the secondary 

power supplies of the N-DPUs and the FEEs via the 

AEUs. The second main functionality of the ICU is the 

compression of all science data products. For this 

purpose, it is equipped with a hardware compression unit. 

The science data received from the DPUs is temporarily 

stored in a dedicated 512 Mbyte SDRAM and is 

subsequently compressed by the compression hardware. 

The compressed science data then is sent to the mass 

memory unit (MMU) of the space-craft. Only windowed 

pixel data is compressed in hardware. The other science 

products are compressed by software in the ICU [10]. 

Normal and fast ancillary electronics units 

The ancillary electronics units (AEUs) main functions 

are the precise conditioning of the FEE secondary 

voltages and the provision of a synchronization pulse that 

is used in the FEEs to trigger the simultaneous read-out 

of all the FEEs. As the AEUs are not considered part of 

the DPS, the AEUs are not described in great detail in this 

paper. Nevertheless, due to the high demands on the 

precision of synchronization signals and secondary 

voltages, they are an integral part of the PLATO payload 

[11]. 

 
Figure 2 Fine-Guidance processing timeline [12] 



 

 PLATO SCIENCE DATA PRODUCTS 

In the following paragraphs we will give a short overview 

of the science data products of the PLATO payload. The 

reason for the different data products is to reduce the 

data-rates even further compared to providing only 

imagette data. The selection of the kind of data product 

for each target can be commanded to the DPUs in order 

to saturate the available down-link. The on-board data-

flow of science data products is shown in Fig. 3 below. 

1.2 Imagettes and auxiliary data 

Imagettes are unprocessed pixel data received by the 

DPUs from the FEEs. The only processing done on-board 

is the reordering of pixels into continuous pixel streams, 

grouping into science packets and compression. The 

details of the compression are described in the section 

“Compression” below. As the imagettes are the raw data 

from the CCDs, they are the primary science data product 

of PLATO. In addition to the target imagettes the 

following auxiliary data is transmitted: Electronic offset, 

                                                           
1  The concrete data-reduction factor depends on the size of the 

input imagette and the cadence of the flux. 

background values (pixels with no stars), smearing 

patterns (resulting from the exposure during readout), 

charge-transfer inefficiency parameters and finally 

house-keeping parameters like temperatures bias-

voltages etc. Imagettes can be between 4x4 and 12x12 

pixel. 

1.3 Fluxes 

In order to observe even more targets then can be down-

linked as imagettes, the DPUs can be commanded to 

process targets on board. One possibility is to calculate 

the flux of a target and only transmit the flux as a single 

number. This achieves a data reduction factor of 

approximately 71. A configurable mask is applied to the 

received pixels prior to the flux calculation. The 

electronic offset correction, the background subtraction 

and the smearing correction is also applied on-board. The 

fluxes then can be averaged over different cadences of 1, 

2 or 24 exposures. The fluxes then can be ordered into a 

time-series on ground to generate light curves. 

Figure 3 PLATO on-board science data-flow [13] 



 

1.4 Centroids 

A second kind of processed data product is the centroids. 

In order to generate a centroid, the N-DPU calculates the 

center of brightness of the target. Again, a mask is 

applied to the received pixel data and the corrections are 

applied as describe in the paragraph above, prior to the 

calculation. The centroid is transmitted as the x- and y-

coordinate of the center of brightness relative to the 

middle of the window. This achieves a data reduction of 

approximately 52. 

1.5 Meta-data removal 

In early definitions of the PLATO science data products, 

it was foreseen to include in the science product, the static 

meta-data (target ID, number of pixels, etc.) of each 

product. As this data does not change over time and 

would be transmitted repeatedly, it was decided to 

remove this meta-data and only transmit it on request. 

This increases the available bandwidth for raw science 

data and also the efficiency of the compression. The 

amount of meta-data that was removed is shown in Fig. 

4 below. 

1.6 Full frame image 

For calibration purposes the PLATO instrument will also 

produce full frame images. These full-frames will be 

used in order to characterize the CCDs and calculate the 

point spread functions of the target stars and to aid the 

scientists in the target selection process. Cosmetic defects 

of the CCDs (bright and dark pixels) can also be detected 

and targets selected accordingly. It is planned to down-

link a full field of view image after each observation and 

after each quarterly roll (PLATO is rotated every 90 days 

by 90 degree in order to cope with the orbital dynamics 

in a similar way as Kepler). These full frame images will 

also be published as science products. 

                                                           
2  See above, also the centroids are combined in packets with 

fluxes so the data reduction can benefit from shared meta-

data. 

1.7 Compression 

In order to further increase the number of targets that can 

be observed and down-linked, the imagette data products 

are compressed in the ICU. The compression algorithm 

used for this is using Golomb coding. Golomb coding is 

a lossless compression method and is an optimal prefix 

code for alphabets with a geometric distribution [14]. 

Golomb coding is suitable for data in which the 

occurrence of small values is significantly more likely 

than large values. In order to ensure this property, the 

dynamic range of the data first is reduced by calculating 

the difference between the data and a data mode. Because 

this can lead to negative numbers and negative signed 

numbers in conventional two’s complement are large 

unsigned numbers, the negative numbers are not 

represented as two’s complement but instead interleaved 

with the positive numbers (0,1,-1,2,-2,3,-3,4,-4…)3. This 

difference is then compressed using the Golomb code in 

a dedicated compression hardware. Using these 

techniques, a lossless compression of a factor of 3.5 (or 

slightly better) can be achieved. The data-flow of this 

algorithm is shown in Fig. 5 below. In regular intervals 

the model is updated and down-linked in order to 

maintain a high compression factor and to minimize the 

impact of possible corruption in the transfer of 

compressed science data packets. A similar algorithm is 

also implemented in the ICU software to allow for 

compression of other science data products. Kepler has 

achieved compression ratios of more than four, but has 

implemented a re-quantization in the compression which 

is technically not lossless. Nevertheless, Kepler also has 

shown that this re-quantization is “quasi-lossless” as no 

information relevant for the science data processing is 

lost. The baseline for PLATO is not to use re-

quantization and instead do more on-board science data 

processing in order to achieve the science goals of the 

mission as described in chapter 1 above. 

3  The formula for positive numbers is N‘=2*N and for 

negative numbers N‘=(abs(N)*2)+1. 

Figure 5 Meta-data Overhead Figure 4 PLATO Compressor Data-flow [15] 



 

 DATA PROCESSING SYSTEMS 

ENGINEERING 

In the following section we describe important design 

principals, tools and techniques that have been applied in 

order to design, specify, and implement the complex 

PLATO DPS system. The following examples are not 

exhaustive and do not include the mandatory application 

of standards such as ECSS-E-ST-40C or similar. 

1.8 Principles and philosophy 

One of the most important principles in system 

engineering is to clearly define responsibilities and 

interfaces. For the PLATO payload the functional 

allocation is straight forward, as described in section 2 

above. The FEEs manage the CCDs and provide the 

windowing functionality, the DPUs manage the FEEs 

and process the pixel data in order to reduce data volume. 

The AEUs provide the high-precision sync pulses and 

condition the secondary power, while the ICU manages 

the whole payload, stores the software binaries and 

configuration data and provides the hardware accelerated 

compression. In terms of operations and FDIR these 

responsibilities are very similar. Each unit in the FEE => 

DPU => ICU => Spacecraft => Ground-station chain 

either detects (and reports) a failure or has the ability to 

isolate or even recover the failure. This is achieved by 

using standardized interfaces, in this case standardized 

PUS services as described below. 

1.9 Hard- and software interfaces 

As described above, clean interfaces are one of the key 

design goals for systems-engineering. Standards help in 

achieving this, because standards are usually well 

documented and understood. The following hard- and 

software interfaces are used in the PLATO payload4. 

SpaceWire 

SpaceWire is a well-established serial interface, widely 

used in the space community [16]. As such, the usage of 

SpaceWire is neither especially innovative nor 

noteworthy. However, the fact that the PLATO payload 

does not feature any low-speed interfaces such as 

MIL1553, together with the fact that only the 

synchronization lines between the AEUs and the FEEs 

are discrete signal lines and the usage of the RMAP 

protocol for remote-terminals without software, greatly 

reduces the complexity of the system as a whole. 

Furthermore, this reduces the reliance on complex EGSE 

systems during AIT. 

                                                           
4  In addition to the described standardized SpaceWire 

protocols, PLATO uses a proprietary protocol exclusively 

between the FEEs and DPUs. 

RMAP 

The Remote Memory Access Protocol (RMAP) is a 

standardized way to access memory region of remote 

units without requiring the remote unit to run a software 

[17]. RMAP is used for two distinct purposes. The first is 

to send data to and acquire data from “non-intelligent” 

units such as the AEUs, the MEU power-supply units and 

the SpaceWire routers. The second is, to boot the DPUs. 

The remote booting of the DPUs by loading the software 

images directly into RAM by the ICU, allows to 

significantly reduce the hardware complexity of the 

DPUs, as the DPUs do not need to be equipped with non-

volatile memory. Furthermore, this reduces the 

operational complexity, as no boot software is needed in 

the DPUs and the central storage of the application 

software images greatly simplifies the application 

software image maintenance. 

CPTP 

The CCSDS Packet Transport Protocol (CPTP) is the 

second standardized protocol on top of the SpaceWire 

standard [18]. In the case of the PLATO payload, all 

CCSDS packets transported between the payload units 

and between the payload and the spacecraft have been 

specified to be Packet Utilization Standard (PUS) 

compliant. An advantage of using the CPTP instead of 

RMAP or other possible proprietary protocols is the fact 

that the CPTP is an asynchronous protocol. This means, 

that there is are very little dependencies (for example in 

timing, memory regions, etc.) between the different units, 

which simplifies the implementation. A disadvantage 

however is the lack of acknowledgement in the protocol 

layer which is handled by the PUS itself. 

PUS 

The Packet Utilization Standard (PUS) specifies a set of 

functionalities and packet formats that should be used in 

accordance to a mission specific tailoring [19]. The usage 

of these standardized services allows a very efficient re-

use of not only on-board software but also EGSE and 

ground segment software. Furthermore, the PUS defines 

a set of services (the monitoring service, the event 

reporting service and the event action service) that in 

combination allows for a very efficient way of imple-

menting complex FDIR scenarios. This decoupling of 

FDIR scenarios from the application software design and 

implementation details also makes it possible to flexibly 

evolve the FDIR scenarios in a late stage of the project 

without needing to change the specification of the soft-

ware itself. Lastly, the usage of PUS packets for (nearly) 

everything also makes testing of specific units without 

the availability of others easy, as the only thing needed is 

an EGSE that allows to send and receive PUS packets. 



 

1.10 Requirement engineering tools 

The usage of requirement authoring and management 

tools has become standard practice in space-projects and 

because of this will not be described in detail in this 

paper. For PLATO, IBM DOORS was chosen as it is 

widely used in the industry. Between the different 

stakeholders in the project, the requirement baselines are 

exchanged directly through DOORS modules, but in 

order to integrate the requirements into the other systems-

engineering tools described below, the requirement 

interchange format (ReqIF) [20] can be used. 

1.11 Interface engineering tools 

One of the interesting aspects of the PLATO DPS 

architecture is the great number of functionally identical 

hardware units. Each DPU for example implements the 

same PUS services and subservices, but naturally is 

allocated different APIDs. The PLATO Payload TMTC 

database engineering tool allows to define the packet 

structure of PUS packets and implements many features 

that are needed to efficiently work with the great number 

of units and APIDs in the system. For example, it allows 

to define a packet structure only once and then allocate 

this packet to as many APIDs as needed. Also, it is 

possible to define different calibration curves for the 

same parameter, one for each unit the parameter is 

allocated to. The TMTC database is implemented using 

the Eclipse Modeling Framework (EMF) [21] and uses a 

Connected Data Objects (CDO) repository as backend. 

The usage of CDO allows essential features such as 

revision control, change tracking and auditing in a 

transparent way [22]. Furthermore, as described in the 

following paragraphs, the leverage of the Eclipse 

ecosystem allows for a seamless integration of the TMTC 

database with other tools used in the system engineering 

context. This is shown in Fig. 6 below. 

Model to Text Generation 

The TMTC database uses the Acceleo Model to Text 

(M2T) transformation language in order to efficiently 

implement export functionalities [23]. Currently 

exporters to the SCOS2000 import ICD format (MIB) 

[24], a latex exporter for generation of TMTC handbooks 

and a generator for on-board source code are available. 

The usage of these exporters guarantees consistency 

between the MIB, the documentation and the 

implementation of the TMTC handling on-board. 

Furthermore, the generation of the on-board software 

code allows the on-board software engineers to 

concentrate on the important features as the amount of 

boilerplate to be written by hand is greatly reduced. 

1.12 Operations engineering tools 

Another important aspect of the systems-engineering 

process of space-missions is the planning of complex 

operational scenarios. Especially in the case of PLATO 

where due to the complexity of the system, there are a 

great amount of interactions. The open-source model-

based systems-engineering (MBSE) tool was chosen for 

PLATO (not only for operations engineering, but also 

other tasks, such as interface definition, requirement-to-

design tracing etc.). Capella also is part of the Eclipse 

ecosystem, which makes the interface between Capella 

and the TMTC database easy to implement [25]. 

Furthermore, Capella already has a ReqIF import 

interface, which allows to directly trace specific items to 

requirements. Operational and FDIR scenarios are 

modeled in Capella. A study is planned in order to 

investigate the integration between Capella and the DLR 

tool PROTOS, which will be used in order to produce the 

operation procedures in the MOIS XML format that has 

been requested by ESA [26]. In case this is not possible, 

the procedures will have to be translated manually. 

Figure 6 TMTC database export features Figure 7 Example FDIR scenario modeled in Capella 
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