

EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESING (OBDP2021), 14-17 JUNE 2021

PLATO DPS: STATE OF THE ART ON-BOARD DATA PROCESSING FOR EUROPE’S

NEXT PLANET-HUNTER

Claas Ziemke (1), Ulrike Witteck(1), Gisbert Peter(1), Philippe Plasson(2), Emanuele Galli(3), Bernd Ulmer(4), Roland

Ottensamer (5), Harald Ottacher(6), James Windsor(7)

(1) German Aerospace Center (DLR) - Institute of Optical Sensor Systems, Berlin, Germany

(2) Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA), Meudon, France

(3) Istituto di Astrofisica e Planetologia Spaziali (INAF IAPS), Rome, Italy

(4) Ingenieurbüro Ulmer, Frankfurt (Oder), Germany

(5) Universität Wien – Institut für Astrophysik, Vienna, Austria

(6) Österreichische Akademie der Wissenschaften - Institut für Weltraumforschung, Graz-Messendorf, Austria

(7) European Space Agency - ESTEC, Noordwijk, The Netherlands

ABSTRACT

State-of-the-art optical space instruments are capable of

producing data rates that considerably exceed the

available down-link capacities. The potential data rates

are increasing as the sensor technologies progress. These

trends require a significant data reduction on-board, most

appropriately at the source of the data, the instrument.

Furthermore, the high availability needed to fulfil the

science goals require a high degree of robustness. In this

paper we will discuss these trends using the example of

the architecture of the data processing system of the

PLATO payload. PLATO (PLAnetary Transits and

Oscillations of stars) is the third medium (M3) mission in

ESA’s Cosmic Vision programme. The goal of the

PLATO mission is to detect terrestrial exoplanets in the

habitable zone of so-lar-type stars and characterize their

bulk properties. The PLATO instrument is comprised of

24 identical refracting telescopes each equipped with 4

CCDs, plus 2 additional telescopes which aid the space-

craft fine-pointing. Altogether the PLATO payload is

comprised of over 27 CPU cores, over 30 FPGAs and 6

Space-Wire Routers. In order to master this complex

system of interacting software and hardware we use

standardized protocols, pre-qualified operating systems,

Model-Based Systems-Engineering tools and techniques,

and code-generation. We will give an overview of the

aforementioned tools and techniques, discuss their

benefits and pitfalls and share the lessons learnt so far in

the development of the PLATO instrument.

 DESIGN DRIVERS FOR ON-BOARD DATA

PROCESSING ARCHITECTURES

Comparing past present and future exo-planet survey

missions, it can be seen that the key characteristics are all

following a clear trend towards better performance and

higher data-rates. The most obvious trend in the

described mission is the increase in the number of CCDs

and consequently the number of pixels that could

potentially be processed and/or downlinked. While

CoRoT [1][2] and TESS [4] are in low-earth orbits that

allow high bandwidth downlinks, Kepler [3] and PLATO

are stationed at the L2 approximately 448900 km from

earth. This limits the amount of available bandwidth.

These factors lead to a high demand of on-board data-

reduction. There are three possibilities in data reduction.

First and most obvious is the fact that only interesting

parts of the CCDs (targets) are downlinked while the rest

of the CCD is discarded. The second is compression. All

the mentioned missions are compressing the pixel data

before downlink and on-board storage. This compression

is lossless (or quasi-lossless in the case of Kepler) as

lossy compression would lead to problems in the further

processing of the data on-ground. The third and most

radical solution is to not downlink the pixel data of

targets at all but instead do the first steps of the scientific

data analysis already on-board. In the case of exo-planet

search this is the calculation of the total brightness (flux)

and the center of brightness (centroid) of stars. As the

demand for the number of observed targets is increasing

and the compression of noise (after a first step of taking

the difference between two consecutive exposures, the

resulting pixel stream is basically noise) is

mathematically limited, the only possibility to further

increase the number of observable targets is the

implementation of on-board data processing. While a

typical PLATO target is a 6x6 pixel image (72 bytes) the

flux of a star is (simplified) essentially a single value of

4 bytes (some details of this can be found in chapter 3).

Table 1 Key characteristics of past and future missions

Mission Launch CCDs MPixel Targets Down-link

CoRoT [1][2] 2006 4 16.78 12k 18 kbps

Kepler [3] 2008 42+4 94.62 170k N/A

TESS [4] 2018 16 67.11 >10k N/A

PLATO ~2026 104+8 1952.6 3600k 5280 kbps

 THE PLATO DATA PROCESSING SYSTEM

In the following section we will describe how the

PLATO data processing system (DPS) is designed to deal

with the challenges described in the previous section. We

will describe the system architecture, the units

comprising the DPS and give an overview of the major

data processing and reduction steps from the CCD read-

out to the mass-memory storage.

1.1 System architecture

The PLATO payload is comprised of telescopes, front-

end electronics (FEEs), data processing units (DPUs),

ancillary electronics units (AEUs) and the instrument

control unit (ICU). There are 24 “normal” cameras and

FEEs, nominally operated at a 25 second cadence, and 2

“fast” cameras and FEEs operated at a 2.5 second

cadence. 12 normal DPUs are grouped into two main

electronics units (MEUs) together with two SpaceWire

routers each, while the two fast DPUs are bundled in the

fast electronics unit (FEU). The Fast DPUs produce a

fine-guidance quaternion for the space-craft attitude

control system and also produce additional science data

products. Furthermore, the instrument has its own power

conditioning AEUs for very precise power conditioning

of the FEEs, highly accurate clock signal distribution to

the FEEs and synchronized CCD read-out triggering. All

the interfaces between the units and between the ICU and

the space-craft are high speed SpaceWire serial links.

Except the synchronization lines there are no discrete,

analogue or low speed lines in the instrument. The

architecture of the PLATO payload is shown in Fig. 1

below.

Figure 1 PLATO payload architecture overview [5]

Normal front-end electronics

Each normal camera is equipped with full-frame 4 CCDs

and is served by the normal-front-end electronics (N-

FEE). The N-FEE is connected to the DPU through a

single SpaceWire line and has two main functions. The

first is of course the control of the CCDs (power

conditioning, clocking, read-out, analogue-digital

conversion etc.). The N-FEEs are triggered every 6.5

seconds to read out a single CCD. This leads to the

overall cadence of 25 seconds for the normal cameras.

The second function of the N-FEE is to select the pixels

of interest for the science products. This function is called

“windowing”. A window list of up to 150.000 entries can

be uploaded to each N-FEE. The N-FEE then cuts out the

selected pixels and only transfers the selected pixels to

the DPU. The N-FEE can also be commanded to transfer

full CCD frames for calibration and characterization

purposes. In this case a full CCD is transferred over two

6.5 second cycles. The N-FEE also implements other

calibration functionalities such as reverse-clocking and

trap-pumping. The N-FEEs are powered and clocked by

the N-AEUs [6].

Normal data processing units

Each normal data processing unit (N-DPU) controls two

N-FEEs. It is equipped with a dual-core LEON3

processor and 256 Mbytes of SDRAM. Each core serves

an N-FEE and runs an independent instance of the real-

time operating system RTEMS. The main functions of

the N-DPUs are, to command and configure the N-FEEs,

to monitor the N-FEE and CCD health, and of course to

execute the science data processing described in the

sections below. 6 N-DPUs serving 12 N-FEEs are

bundled into the MEU and are connected via two

redundant SpaceWire links with two SpaceWire routers

inside the MEU. Each router is connected with one side

of the ICU via a SpaceWire link. The N-DPUs secondary

voltages are conditioned by the MEU’s internal power

supply [7].

Fast front-end electronics

Each fast camera is equipped with 4 frame transfer CCDs

and is served by the fast-front-end electronics (F-FEE).

The functions of the F-FEE are very similar to the N-

FEEs with the main difference of a 2.5 second trigger

pulse and a simultaneous read-out of all 4 CCDs. To

achieve a low latency in the fast processing chain and

enable the simultaneous readout of all 4 CCDs, the F-

FEEs are connected to the fast data processing units (F-

DPUs) through 4 parallel SpaceWire lines. As the N-

FEEs, the F-FEEs also can be commanded to transfer full

CCD frames for calibration purposes. In this case the data

of a single CCD is transmitted over two SpaceWire links

simultaneously. The F-FEEs are powered and clocked by

the F-AEU [8].

Fast data processing units

Each fast data processing unit (F-DPU) controls a single

F-FEE. It is equipped with a LEON2 processor, 8 Mbytes

of SRAM for the on-board software running the real-time

operating system RTEMS and a companion FPGA which

is used to reconstruct the windowed pixel data received

from the F-FEE through the 4 SpaceWire links. The pixel

data is stored in a dedicated 512 Mbyte of SDRAM. The

main function of the F-DPUs is to command and

configure the F-FEEs and to provide fine guidance

quaternions to the space-craft with a maximum latency of

3.75 seconds relative to the middle of integration via a

dedicated SpaceWire line, the timing is shown in Fig. 2

below. Furthermore, the F-DPUs are also providing

windowed pixel data as science products. Both F-DPUs

are bundled into the FEU and are connected via two

redundant SpaceWire links to the ICU [9].

Instrument control unit

The instrument control unit (ICU) as the name suggests

is controlling all the units of the instrument itself short of

the primary power supplies that are controlled by the

space-craft. It does control however, the secondary

power supplies of the N-DPUs and the FEEs via the

AEUs. The second main functionality of the ICU is the

compression of all science data products. For this

purpose, it is equipped with a hardware compression unit.

The science data received from the DPUs is temporarily

stored in a dedicated 512 Mbyte SDRAM and is

subsequently compressed by the compression hardware.

The compressed science data then is sent to the mass

memory unit (MMU) of the space-craft. Only windowed

pixel data is compressed in hardware. The other science

products are compressed by software in the ICU [10].

Normal and fast ancillary electronics units

The ancillary electronics units (AEUs) main functions

are the precise conditioning of the FEE secondary

voltages and the provision of a synchronization pulse that

is used in the FEEs to trigger the simultaneous read-out

of all the FEEs. As the AEUs are not considered part of

the DPS, the AEUs are not described in great detail in this

paper. Nevertheless, due to the high demands on the

precision of synchronization signals and secondary

voltages, they are an integral part of the PLATO payload

[11].

Figure 2 Fine-Guidance processing timeline [12]

 PLATO SCIENCE DATA PRODUCTS

In the following paragraphs we will give a short overview

of the science data products of the PLATO payload. The

reason for the different data products is to reduce the

data-rates even further compared to providing only

imagette data. The selection of the kind of data product

for each target can be commanded to the DPUs in order

to saturate the available down-link. The on-board data-

flow of science data products is shown in Fig. 3 below.

1.2 Imagettes and auxiliary data

Imagettes are unprocessed pixel data received by the

DPUs from the FEEs. The only processing done on-board

is the reordering of pixels into continuous pixel streams,

grouping into science packets and compression. The

details of the compression are described in the section

“Compression” below. As the imagettes are the raw data

from the CCDs, they are the primary science data product

of PLATO. In addition to the target imagettes the

following auxiliary data is transmitted: Electronic offset,

1 The concrete data-reduction factor depends on the size of the

input imagette and the cadence of the flux.

background values (pixels with no stars), smearing

patterns (resulting from the exposure during readout),

charge-transfer inefficiency parameters and finally

house-keeping parameters like temperatures bias-

voltages etc. Imagettes can be between 4x4 and 12x12

pixel.

1.3 Fluxes

In order to observe even more targets then can be down-

linked as imagettes, the DPUs can be commanded to

process targets on board. One possibility is to calculate

the flux of a target and only transmit the flux as a single

number. This achieves a data reduction factor of

approximately 71. A configurable mask is applied to the

received pixels prior to the flux calculation. The

electronic offset correction, the background subtraction

and the smearing correction is also applied on-board. The

fluxes then can be averaged over different cadences of 1,

2 or 24 exposures. The fluxes then can be ordered into a

time-series on ground to generate light curves.

Figure 3 PLATO on-board science data-flow [13]

1.4 Centroids

A second kind of processed data product is the centroids.

In order to generate a centroid, the N-DPU calculates the

center of brightness of the target. Again, a mask is

applied to the received pixel data and the corrections are

applied as describe in the paragraph above, prior to the

calculation. The centroid is transmitted as the x- and y-

coordinate of the center of brightness relative to the

middle of the window. This achieves a data reduction of

approximately 52.

1.5 Meta-data removal

In early definitions of the PLATO science data products,

it was foreseen to include in the science product, the static

meta-data (target ID, number of pixels, etc.) of each

product. As this data does not change over time and

would be transmitted repeatedly, it was decided to

remove this meta-data and only transmit it on request.

This increases the available bandwidth for raw science

data and also the efficiency of the compression. The

amount of meta-data that was removed is shown in Fig.

4 below.

1.6 Full frame image

For calibration purposes the PLATO instrument will also

produce full frame images. These full-frames will be

used in order to characterize the CCDs and calculate the

point spread functions of the target stars and to aid the

scientists in the target selection process. Cosmetic defects

of the CCDs (bright and dark pixels) can also be detected

and targets selected accordingly. It is planned to down-

link a full field of view image after each observation and

after each quarterly roll (PLATO is rotated every 90 days

by 90 degree in order to cope with the orbital dynamics

in a similar way as Kepler). These full frame images will

also be published as science products.

2 See above, also the centroids are combined in packets with

fluxes so the data reduction can benefit from shared meta-

data.

1.7 Compression

In order to further increase the number of targets that can

be observed and down-linked, the imagette data products

are compressed in the ICU. The compression algorithm

used for this is using Golomb coding. Golomb coding is

a lossless compression method and is an optimal prefix

code for alphabets with a geometric distribution [14].

Golomb coding is suitable for data in which the

occurrence of small values is significantly more likely

than large values. In order to ensure this property, the

dynamic range of the data first is reduced by calculating

the difference between the data and a data mode. Because

this can lead to negative numbers and negative signed

numbers in conventional two’s complement are large

unsigned numbers, the negative numbers are not

represented as two’s complement but instead interleaved

with the positive numbers (0,1,-1,2,-2,3,-3,4,-4…)3. This

difference is then compressed using the Golomb code in

a dedicated compression hardware. Using these

techniques, a lossless compression of a factor of 3.5 (or

slightly better) can be achieved. The data-flow of this

algorithm is shown in Fig. 5 below. In regular intervals

the model is updated and down-linked in order to

maintain a high compression factor and to minimize the

impact of possible corruption in the transfer of

compressed science data packets. A similar algorithm is

also implemented in the ICU software to allow for

compression of other science data products. Kepler has

achieved compression ratios of more than four, but has

implemented a re-quantization in the compression which

is technically not lossless. Nevertheless, Kepler also has

shown that this re-quantization is “quasi-lossless” as no

information relevant for the science data processing is

lost. The baseline for PLATO is not to use re-

quantization and instead do more on-board science data

processing in order to achieve the science goals of the

mission as described in chapter 1 above.

3 The formula for positive numbers is N‘=2*N and for

negative numbers N‘=(abs(N)*2)+1.

Figure 5 Meta-data Overhead Figure 4 PLATO Compressor Data-flow [15]

 DATA PROCESSING SYSTEMS

ENGINEERING

In the following section we describe important design

principals, tools and techniques that have been applied in

order to design, specify, and implement the complex

PLATO DPS system. The following examples are not

exhaustive and do not include the mandatory application

of standards such as ECSS-E-ST-40C or similar.

1.8 Principles and philosophy

One of the most important principles in system

engineering is to clearly define responsibilities and

interfaces. For the PLATO payload the functional

allocation is straight forward, as described in section 2

above. The FEEs manage the CCDs and provide the

windowing functionality, the DPUs manage the FEEs

and process the pixel data in order to reduce data volume.

The AEUs provide the high-precision sync pulses and

condition the secondary power, while the ICU manages

the whole payload, stores the software binaries and

configuration data and provides the hardware accelerated

compression. In terms of operations and FDIR these

responsibilities are very similar. Each unit in the FEE =>

DPU => ICU => Spacecraft => Ground-station chain

either detects (and reports) a failure or has the ability to

isolate or even recover the failure. This is achieved by

using standardized interfaces, in this case standardized

PUS services as described below.

1.9 Hard- and software interfaces

As described above, clean interfaces are one of the key

design goals for systems-engineering. Standards help in

achieving this, because standards are usually well

documented and understood. The following hard- and

software interfaces are used in the PLATO payload4.

SpaceWire

SpaceWire is a well-established serial interface, widely

used in the space community [16]. As such, the usage of

SpaceWire is neither especially innovative nor

noteworthy. However, the fact that the PLATO payload

does not feature any low-speed interfaces such as

MIL1553, together with the fact that only the

synchronization lines between the AEUs and the FEEs

are discrete signal lines and the usage of the RMAP

protocol for remote-terminals without software, greatly

reduces the complexity of the system as a whole.

Furthermore, this reduces the reliance on complex EGSE

systems during AIT.

4 In addition to the described standardized SpaceWire

protocols, PLATO uses a proprietary protocol exclusively

between the FEEs and DPUs.

RMAP

The Remote Memory Access Protocol (RMAP) is a

standardized way to access memory region of remote

units without requiring the remote unit to run a software

[17]. RMAP is used for two distinct purposes. The first is

to send data to and acquire data from “non-intelligent”

units such as the AEUs, the MEU power-supply units and

the SpaceWire routers. The second is, to boot the DPUs.

The remote booting of the DPUs by loading the software

images directly into RAM by the ICU, allows to

significantly reduce the hardware complexity of the

DPUs, as the DPUs do not need to be equipped with non-

volatile memory. Furthermore, this reduces the

operational complexity, as no boot software is needed in

the DPUs and the central storage of the application

software images greatly simplifies the application

software image maintenance.

CPTP

The CCSDS Packet Transport Protocol (CPTP) is the

second standardized protocol on top of the SpaceWire

standard [18]. In the case of the PLATO payload, all

CCSDS packets transported between the payload units

and between the payload and the spacecraft have been

specified to be Packet Utilization Standard (PUS)

compliant. An advantage of using the CPTP instead of

RMAP or other possible proprietary protocols is the fact

that the CPTP is an asynchronous protocol. This means,

that there is are very little dependencies (for example in

timing, memory regions, etc.) between the different units,

which simplifies the implementation. A disadvantage

however is the lack of acknowledgement in the protocol

layer which is handled by the PUS itself.

PUS

The Packet Utilization Standard (PUS) specifies a set of

functionalities and packet formats that should be used in

accordance to a mission specific tailoring [19]. The usage

of these standardized services allows a very efficient re-

use of not only on-board software but also EGSE and

ground segment software. Furthermore, the PUS defines

a set of services (the monitoring service, the event

reporting service and the event action service) that in

combination allows for a very efficient way of imple-

menting complex FDIR scenarios. This decoupling of

FDIR scenarios from the application software design and

implementation details also makes it possible to flexibly

evolve the FDIR scenarios in a late stage of the project

without needing to change the specification of the soft-

ware itself. Lastly, the usage of PUS packets for (nearly)

everything also makes testing of specific units without

the availability of others easy, as the only thing needed is

an EGSE that allows to send and receive PUS packets.

1.10 Requirement engineering tools

The usage of requirement authoring and management

tools has become standard practice in space-projects and

because of this will not be described in detail in this

paper. For PLATO, IBM DOORS was chosen as it is

widely used in the industry. Between the different

stakeholders in the project, the requirement baselines are

exchanged directly through DOORS modules, but in

order to integrate the requirements into the other systems-

engineering tools described below, the requirement

interchange format (ReqIF) [20] can be used.

1.11 Interface engineering tools

One of the interesting aspects of the PLATO DPS

architecture is the great number of functionally identical

hardware units. Each DPU for example implements the

same PUS services and subservices, but naturally is

allocated different APIDs. The PLATO Payload TMTC

database engineering tool allows to define the packet

structure of PUS packets and implements many features

that are needed to efficiently work with the great number

of units and APIDs in the system. For example, it allows

to define a packet structure only once and then allocate

this packet to as many APIDs as needed. Also, it is

possible to define different calibration curves for the

same parameter, one for each unit the parameter is

allocated to. The TMTC database is implemented using

the Eclipse Modeling Framework (EMF) [21] and uses a

Connected Data Objects (CDO) repository as backend.

The usage of CDO allows essential features such as

revision control, change tracking and auditing in a

transparent way [22]. Furthermore, as described in the

following paragraphs, the leverage of the Eclipse

ecosystem allows for a seamless integration of the TMTC

database with other tools used in the system engineering

context. This is shown in Fig. 6 below.

Model to Text Generation

The TMTC database uses the Acceleo Model to Text

(M2T) transformation language in order to efficiently

implement export functionalities [23]. Currently

exporters to the SCOS2000 import ICD format (MIB)

[24], a latex exporter for generation of TMTC handbooks

and a generator for on-board source code are available.

The usage of these exporters guarantees consistency

between the MIB, the documentation and the

implementation of the TMTC handling on-board.

Furthermore, the generation of the on-board software

code allows the on-board software engineers to

concentrate on the important features as the amount of

boilerplate to be written by hand is greatly reduced.

1.12 Operations engineering tools

Another important aspect of the systems-engineering

process of space-missions is the planning of complex

operational scenarios. Especially in the case of PLATO

where due to the complexity of the system, there are a

great amount of interactions. The open-source model-

based systems-engineering (MBSE) tool was chosen for

PLATO (not only for operations engineering, but also

other tasks, such as interface definition, requirement-to-

design tracing etc.). Capella also is part of the Eclipse

ecosystem, which makes the interface between Capella

and the TMTC database easy to implement [25].

Furthermore, Capella already has a ReqIF import

interface, which allows to directly trace specific items to

requirements. Operational and FDIR scenarios are

modeled in Capella. A study is planned in order to

investigate the integration between Capella and the DLR

tool PROTOS, which will be used in order to produce the

operation procedures in the MOIS XML format that has

been requested by ESA [26]. In case this is not possible,

the procedures will have to be translated manually.

Figure 6 TMTC database export features Figure 7 Example FDIR scenario modeled in Capella

REFERENCES

[1] Auvergne, M. Et al.: The CoRoT satellite in

flight: description and performance. A&A 506,

411–424 (2009).

[2] Vandermarcq, O.: At the heart of the COROT

mission operations. SpaceOps 2008 Conference

(Hosted and organized by ESA and

EUMETSAT in association with AIAA)

[3] Koch, D. G. Et al.: KEPLER MISSION

DESIGN, REALIZED PHOTOMETRIC

PERFORMANCE, AND EARLY SCIENCE.

The Astrophysical Journal Letters, 713, 79–86,

(2010)

[4] Schlieder, J. Et al.: TESS Guest Investigator

Program - TESS Observatory Guide. Version

1.1, TESS Science Support Center, NASA

Goddard Space Flight Center, Greenbelt, MD,

(2017).

[5] Ziemke, C., Et al.: PLATO-DLR-PL-RS-0006,

PLATO (On-Board) Software System

Specification, Issue 2.3, German Aerospace

Center, Berlin, (2019).

[6] Hailey, M., Et al.: PLATO-MSSL-PL-DD-

0001, N-FEE Design Description, Issue 6.0,

UCL Department of Space and Climate Physics

Mullard Space Science Laboratory, Surrey,

(2021)

[7] Plasson, P., Et al.: PLATO-LESIA-PL-DD-

0004, N-DPU Application Software Design

Document (SDD), Issue 1.1, Observatoire de

PARIS Section de MEUDON – LESIA, Paris,

(2019)

[8] Koncz, A., Et al.: PLATO-DLR-PL-DD-001, F-

FEE Design Description, Issue 1.3, German

Aerospace Center, Berlin, (2016).

[9] Witteck, U., Et al.: PLATO-DLR-PL-DD-0002,

F-DPU Software Design Document, Issue 1.0,

German Aerospace Center, Berlin, (2019).

[10] Galli, E., Et al.: PLATO-INAF-PL-DD-0007,

ICU-ASW Design Document, Issue 1.3, INAF -

IAPS, Rome, (2021).

[11] Koch, M., PTO-ASPE-MA-RS-2000, PLATO

F-AEU Specification, Issue 4, Advanced Space

Power Equipment GmbH, Salem, (2021)

[12] Grießbach, D., Et al.: PLATO-DLR-PL-RP-

0003, Fine Guidance System Performance

Report, Issue 3.3, German Aerospace Center,

Berlin, (2020).

[13] Samadi, R. Et al.: PLATO N-DPU: Architecture

and data flows of the on-board science data

processing pipeline, Issue 2.1, Observatoire de

Paris, Paris, (2019).

[14] Golomb, S. W: Run-length encodings. IEEE

Transactions on Information Theory, IT--

12(3):399—401, (1966).

[15] Ottensamer, R. Heiss, M. Loidolt, D.: PLATO

Data Compression Concept, Issue 1, University

of Vienna, Vienna, (2019).

[16] ECSS‐E‐ST‐50‐12 - Space engineering ‐ Space-

Wire ‐ Links, nodes, routers and networks, Issue

C, ECSS, (2008).

[17] ECSS‐E‐ST‐50‐52 - Space engineering ‐ Space-

Wire ‐ Remote memory access protocol, Issue

C, ECSS, (2008).

[18] ECSS‐E‐ST‐50‐53 - Space engineering ‐ Space-

Wire ‐ CCSDS packet transfer protocol, Issue C,

ECSS, (2008).

[19] ECSS-E-ST-70-41 - Space engineering -

Telemetry and telecommand packet utilization,

Issue C, ECSS, (2016)

[20] Requirements Interchange Format (ReqIF),

Issue 1.2, OMG, (2016)

[21] Merks, E. Et al.: EMF: Eclipse Modeling

Framework, 2nd Edition, Addison-Wesley

Professional, (2008).

[22] Seybold, D., Et al.: Experiences of models@

run-time with EMF and CDO, Proceedings of

SLE 2016, Amsterdam, (2016)

[23] Luhunu, L., Syriani, E.: Comparison of the

expressiveness and performance of template-

based code generation tools, 10th ACM

SIGPLAN International Conference, (2017)

[24] EGOS-MCS-S2K-ICD-0001 - SCOS-2000

Database Import ICD, Issue 7.1, (2018)

[25] Roques, P.: MBSE with the ARCADIA Method

and the Capella Tool, (2016)

[26] Beck, T., Et al.: ProToS: Next Generation

Procedure Tool Suite for Creation, Execution

and Automation of Flight Control Procedures,

14th International Conference on Space

Operations, Daejeon, (2016)

