

PLATO DPS: State of the art on-board processing for Europe's next planet-hunter June 14th, 2021

European Workshop on On-Board Data Processing PLATO DPS Team

PREVIOUSLY ON EXOPLANETS

European Workshop on On-Board Data Processing, 13-17.06.2021, Online-Event

THE PLATO MISSION

- ESA Cosmic Vision 3 Mission (M3)
- Science Goals
 - Detect terrestrial exoplanets in the habitable zone of solar-type stars
 - Characterize their bulk properties
- Orbit: L2 Halo
- Quaterly 90 degree roll
- Launch: 2026
- Down-link budget: 435 Gbit/day ~ 5.15 Mbit/s

- 24 + 2 Cameras are mounted on a single optical bench
 - 4 Camera Groups
 - 6 Normal Cameras per Group
- Refractor
 - 4 Full frame CCDs by e2v
 - 4510x4510 pixel each
- 25s (nominal) cadence
 - Staggered readout
 - One CCD every 6.25s
- Using multiple cameras increases
 - Signal to noise ratio
 - Robustness
 - Field-of-view

Picture courtesy of RUAG

THE PLATO INSTRUMENT

- Camera Subsystem
 - 24 Normal cameras
 - 2 Fast cameras
 - 2 Normal AEUs
 - 1 Fast AEUs
- DPS Subsystem
 - 12 Normal data processing units
 - 2 Fast data processing units
 - Routers and PSUs
 - Instrument Control Unit

THE FRONT-END ELECTRONICS

- Analog Part
 - CCD Management
 - High-Precision HKs
- Digital-Part
 - FPGA
 - Buffer
 - SpW Transceivers
 - One SpW link per N-FEE
 - DPU \rightarrow FEE = 10Mhz
 - FEE \rightarrow DPU = 100MHz
 - Windowing
 - One CCD ~38MByte
 - 38MB/6.25s~50Mbps
 - Up to 300.000 windows per camera
 - Up to 10% of the whole CCD can be selected

DATA REDUCTION AT THE SOURCE

- Data that is not produced does not need to be processed
- If production is mandatory (only full CCD lines can be digitized) it is most efficient to discard not needed data immediately

European Workshop on On-Board Data Processing, 13-17.06.2021, Online-Event

NORMAL DATA PROCESSING UNITS

- Functions
 - Camera management (2 Cams per DPU)
 - Science / Data reduction
- Hardware
 - GR712RC Dual-core Leon3 CPU
 - 256 MB SDRAM
 - No Non-volatile memory
- Software
 - RTEMS 4.8 (Qualifiable version)
 - Mixed C/C++ implementation (based on LESIA proprietary lib)

INSTRUMENT CONTROL UNIT

- Functions
 - Instrument management
 - Booting DPUs
 - SpW network management
 - Data reduction (Compression)
 - Payload level FDIR & Autonomy
- Hardware
 - UT700 single core Leon3 CPU
 - FPGA Compression Board
 - 2 x 512 MB SDRAM + 16 MB MRAM + PROM
- Software
 - ASW RTEMS 4.8 (Qualifiable version) / C implementation
 - BSW Bare-metal C super-loop

COMPRESSION

- Golomb-code with custom pre-processing implemented in FPGA
 - Difference between data and "model" is taken
 - The remainder is basically noise
 - Overlap and interleave is applied (0, -1, 1, -2, 2, -3, etc.)
 - Result an array of small integers (around 5 bits)
 - These will be encoded using a Golomb-code
 - "model" is updated

PLATO DATA PRODUCTS

- Number of science targets is still larger then down-link capacity
- Further data reduction by the DPUs is needed
- Data products
 - Imagettes
 - Flux (Lightcurves)
 - Centroid
 - Background
 - Offset
 - Smearing

Number (#) of data products	UC#1	UC#2	UC#3	UC#4
	[# / Cam]	[# / Cam]	[# / Cam]	[# / Cam]
24 x N-Camera / 12 x N-DPU				
Light (50 s)	31350	31350	31350	31350
Light, Centroid/COB (50 s)	3700	3700	3700	3700
Light (600 s)	73500	48605	46855	50355
Background (25 s)	3000	3000	3000	3000
Imagettes [36pixel] (25 s)	11000	20650	22400	18900
Offset (25 s)	8	8	8	8
Smearing (600 s)	18040	18040	18040	18040
Science HK (6,25 s / 25 s)	56	56	56	56
2 X F-Calleras / 2 X F-DFU	205	205	205	205
Intagettes [36pixel] (2,5 s)	320	325	320	320
Background (2,5 s)	100	100	100	100
	8	8	8	8
Science HK (2,5 s / 25 s)	40	40	40	40
FGS data (2,5 s)	40	40	40	40
TM data budget (ICU to SVM) [Gbit/day]	297	435	435	435
Margin vs max, daily TM volume [%]	46	0	0	0

PLATO 2.0 dr. m

ON-BOARD DATA PROCESSING

13-17.06.2021, Online-Event

- Functions
 - Camera management
 - Fine guidance
 - Science
- Hardware
 - MDPA single core Leon2 CPU
 - Acceleartion FPGA
 - 8MB SRAM + 128MB DRAM
 - PROM
- Software
 - RTEMS 4.8 (Qualifiable version)
 - Mixed C/C++ implementation (C++ only for GNC algorithms)

Figure 2-1: FEU Block Diagram

- S/C attitude sensors are not precise enough
- Fast-cameras can be used as high-precision star trackers
- Performance
 - Max. latency 2500ms => 300ms for SW
 - Noise Equivalent Angle (NEA) 25 milliarcseconds (x/y)
- FGS packet every 2.5s to S/C
 - Quaternion

STANDARDIZED INTERFACES

- Only SpaceWire between units
 - RMAP only for non-intelligent units (AEUs, Routers) and DPU Booting
 - CPTP (PUS) for all other communication
 - CPTP between ICU and Space-Craft
- No low-speed interfaces (like MIL-1553)
- No discrete signals (in DPS Subsystem, only sync pulses in Camera Subsystem)
- Standard PUS services
 - Service 5, 14, 18, 19 for flexible FDIR implementation
 - Allows decoupling and minimal dependencies between units

TM/TC INTERFACE ENGINEERING

- DLR inhouse developed Tool
 - Based on Eclipse eco-system (EMF, CDO, OCL, Acceleo, etc.)
- PLATO specific features
 - Packet structure defined once, allocated to multiple APIDs
 - Parameters defined once, allocated to multiple HW units
 - Calibration curves can be allocated to Parameter/Unit combination
- Exporters
 - MIB
 - TM/TC Excel Sheets
 - Documentation (Handbooks)
 - Source Code
 - Capella Model

OPERATIONS ENGINEERING

- Capella MBSE Tool (Also Based on Eclipse eco-system)
- Used for
 - Operations and FDIR scenarios
 - Functional allocation
 - Unit modes design
 - Tracing design to Reqs.
 - Etc.
- Importers
 - ReqIF (Reqs.) from DOORS
 - TM/TC Packets from DB
- Exportes
 - Documents (User Manual)
 - PROTOS (DLR inhouse tool for generating MOIS procedures) is currently investigated

THE WHOLE PLATO TEAM SAYS: **THANK YOU!**

