

European Workshop on **On-Board Data Processing** CONES 4 Cesa 14 - 17 June 2021 | Online Event

AN AUTONOMOUS CONTROL SOFTWARE EMBEDDED IN A CUSTOM-DESIGNED ELECTRONIC ARCHITECTURE FOR EXOMARS' **RLS INSTRUMENT TO ANALYZE SAMPLES AT MARS SURFACE**

Laura Seoane. INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL (INTA), SPAIN

Sergio Ibarmia (INTA), Jesús Zafra (INTA), César Quintana (INTA), Carlos Pérez-Canora (INTA), Andoni Moral (INTA), Fernando Rull (UVa) & Olga Prieto-Ballesteros (CSIC-INTA)

THE RAMAN LASER SPECTROMETER (RLS) ON BOARD EXOMARS 2022

- ExoMars 2022 mission consists of a Spacecraft Composite that will carry a Surface Platform and a Rover to Mars
- The launch window is foreseen in September 2022 to land on Mars in June 2023
- RLS is one of the analytical instruments on board the Rover
- The Rover will drill the Mars surface (up to 2m depth) to collect small samples that will be delivered to the analytical laboratory in the heart of the vehicle
- RLS will perform Raman spectroscopy on the collected samples
- The Raman analysis is carried out by exciting a sample with a specific laser signal and then doing a spectrometry analysis on the obtained emission from the sample

- RLS is composed of the following main units:
 - The Spectrometer Unit (SPU), which achieves the spectral dispersion of the signal emitted by the sample, and received on the CCD element
 - The Internal Optical Head (iOH), which focus the laser excitation signal onto the sample and collects the signal emitted by the sample before sending it to the SPU
 - The Instrument Control and Excitation Unit (ICEU), which controls the overall instrument operation, processes spectra and provides data and power interface with the Rover through the embedded instrument SW.
 - Includes FEE, DPU & DCDC boards and also the Laser unit

AN AUTONOMOUS CONTROL SOFTWARE EMBEDDED IN A CUSTOM-DESIGNED ELECTRONIC ARCHITECTURE FOR EXOMARS' RLS INSTRUMENT TO ANALYZE SAMPLES AT MARS SURFACE

XOMARS

RLS SW runs on the DPU board's microprocessor

The 2nd European Workshop on On-Board Data Processing. OBDP 2021. Online event. 14-17 June 2021

4

CAN

BUS

TC/TM

Applicatior Software

 \mathbf{J}

CCD Control

FEE CCD Laser

Driver

Thermal

Control

Laser

SW Layer

HW Layer

iOH

Control

On-Board

Algorithms

IOH

The RLS onboard SW

The RLS SW is composed of :

- The Application SW, providing control over the full operation
- The Boot SW, performing initialization and App. SW updates

The main functionalities are the following:

- Managing <u>communications</u> with the Rover
- Precise <u>temperature control</u> of laser and CCD units
- ✤ Laser channel activation
- Controlling the iOH <u>focusing</u> mechanism and performing autofocus
- Commanding a CCD image <u>acquisiton</u>
- Post-processing acquired images to optimize the Raman spectra quality
- Others: HK acquisition, events generation, FDIR, management of memory controller, timers, watchdog, interrupts, etc.

Communications with the Rover

- A redundant 1Mbps CAN/CANopen bus is the only data interface with the Rover
- Command reception and Telemetry transmission are performed through CAN/CANOpen. Even long science telemetries (up to around 2Mbytes) are transmitted
- RLS makes use of the CANopen IP Core developed by Sitael embedded in a reprogrammable Flash MicrosemiProAsic FPGA
- The RLS SW handles the IP Core through specific-designed FPGA registers that are mapped in the I/O memory area of the microprocessor
- The RLS SW implements CANopen synchronous & asynchronou:
 PDOs (Process data objects) and also SDOs (Service Data Object)
 block transfers

Thermal Control

The RLS ASW controls:

- The Laser TEM (Thermo-Electrical Module), heating and/or cooling until the laser achieves its best working temperature
 - PID-based TEM thermal control, fine control with 0.2 degrees accuracy
- The CCD TEC (Thermo-Electrical Cooler), cooling the CCD for performance improvement
 - PID-based TEC thermal control, coarse control reaching -40 degrees

The thermal control is one of the most critical features because a high temperature gradient can damage the laser and CCD permanently.

Thus, the ASW performs a gradual thermal control switch ON/OFF ensuring safety gradients for both elements

Thermo-Electrical Module

LASER Driver

The RLS ASW activates/deactivates the selected laser channel:

- Laser channel selection (2 channels available)
- Switch ON/OFF the laser
- Monitor laser stabilization

EXOMARS

Minimize power consumption

RLS Laser unit

The Laser unit is the instrument excitation source, a diodepumped solid-state laser emitting at 532nm

IOH Control

The RLS ASW moves the iOH stepper motor by commandig the actuator motor driver. The allowed iOH operations are as follows:

Move the motor step by step

X O M A

- Three operation modes available: full step, quarter step and microstepping
- * Go to a specific position on-demand

RS

Perform Autofocus as a closed-loop algorithm, which moves the focusing optics along a 2 mm travel range until a maximum intensity of the laser reflection is achieved

FEE & CCD Control

The RLS ASW performs the **image acquisition process**, allowing **low level control** of the CCD for integration and characterization purposes such as:

- ROI determination
- CCD noise
- Gain control
- Bias characterization
- Frame size

E

- Pixel to 14-bit or 16-bit selection
- Other CCD acquisition settings

XIO M A

RS

RLS image and spectrum example

On-board processing algorithms

X O M A

E

RS

The RLS SW implements post-processing algorithms to **automate the acquisition of Raman spectral data** and **optimize the scientific performance**, contributing to a prompt identification of those Raman data with possible biological interest

Onboard algorithms execution flow

- Saturation Skip: Performs a continuous acquisition, decreasing the acquisition time until CCD pixels are not saturated. Outputs an Acquisition Reference Time
- Fluorescence Minimization: Performs a continuous acquisition, with the calculated reference time, until the overall spectrum fluorescence is minimum
- Cosmic Rays Removal: Analyses two spectra acquired with the reference time, identifies GCR spikes and cleans them
- Exposure Time Optimization: Adjusts the exposure acquisition time to the dynamic range of the imaging CCD in order to maximize the signal
- Noise and Acq Optimization: Estimates SNR and calculates the optimum number of image Acquisition to minimize noise and improve Raman signal
- Operational Acq: Adapts the Optimum Acquisition Parameters to the available operational resources (time, memory storage, down-link data)

CONCLUSIONS

- ✤ A reliable software solution was developed for the RLS instrument
- The RLS SW provides an automated control of all the instrument subsystems as well as capabilities to allow quick analyses of the Raman spectra
- The developed RLS SW was successfully validated on all the RLS models (EIS Electrical Interface Simulator-, EQM, EQM-2, FM and FS) and is expected to be helpful to reach the ExoMars mission's goals

AN AUTONOMOUS CONTROL SOFTWARE EMBEDDED IN A CUSTOM-DESIGNED ELECTRONIC ARCHITECTURE FOR EXOMARS' RLS INSTRUMENT TO ANALYZE SAMPLES AT MARS SURFACE

THANKS FOR YOUR ATTENTION!

ANY QUESTIONS? PLEASE FEEL FREE TO CONTACT THE EXOMARS RAMAN TEAM AT INTA AT <u>ExoMarsRaman@inta.es</u>

MORE INFORMATION ALSO IN OUR BLOG <u>HTTPS://WWW.INTA.ES/INTA/EN/BLOGS/EXOMARSRAMAN/</u>

OR FOLLOW US ON TWITTER HTTPS://TWITTER.COM/EXOMARSRAMAN

