HYPERSPECTRAL DIGITAL BACKEND BREADBOARDING FOR MICROWAVE RADIOMETERS.

183 GHZ WATER VAPOUR ABSORPTION BAND APPLICATION TO SAPHIR-NG SENSOR

MÈGE, Alexandre ⁽¹⁾, JEANNIN, Nicolas ⁽¹⁾, GONZALEZ, Patrice ⁽²⁾, CARAYON, Benjamin ⁽¹⁾, PUECH, Jérôme ⁽²⁾

- (1) AIRBUS DEFENCE AND SPACE
- (2) CNES Service Instrumentation Radar et Performances

OBDP 2021, 2021-06-14

Microwave atmospheric sounding principle (1/2)

Brightness Temperature (= Spectral power density) depends on

- Frequency
- Atmospheric state
 - Specific humidity vs altitude
 - Temperature vs altitude -

Brightness temperature over 10-200 GHz computed using the software ARTS

 (H_2O)

175

200

Microwave atmospheric sounding principle (2/2)

From SAPHIR to SAPHIR-NG

Digital channelisation

AIRBUS

Performance goals

- Bandwidth $B_T > 10 \text{ GHz}$
- Max radiometric bias increase **0.1K**
- Power consumption <10 W
- Frequency selectivity <-40 dB (at TBC MHz from filter center)

DEFENCE AND SPACE

Acquisition chain model and calibration

Calibration uses a cold source (cold sky) and a hot source (metrology hot source)

AIRBUS

OBDP 2021

Processing and algorithm

DEFENCE AND SPACE

Spectrometer and bank of filters

- z^i estimator of the mean of the power y^i over N samples $z^i[n] = \frac{1}{N} \sum_k |y^i[k]|^2$
- Goal: to have a definition of filter H^i with a good spectral resolution and a good variance of the power estimation while keeping a low computation complexity

FIR filter response trade-off

Frequency response 16 coefficients

Frequency response 64 coefficients

Filter architecture : Bank of FIR filters

Computation Complexity

- L filters
- M coefficients per filter
 - => L.M multiplications per input sample

Filter architecture : Polyphase filterbank

Uses FFT and polyphase filter architecture

- Polyphase structure can be used to create a filter bank with low processing complexity
- FFT is used to generate the L output channels in parallel

Computation Complexity

- M coefficient window
- L prefilters with M/L coefficients, working at 1/L Fin
- L point FFT, with L sample processed every L input samples $\frac{1}{L} * L * \frac{M}{L}$ multiplications per input sample for the prefilters $\frac{1}{L} .2L. log2(L)$ multiplications per input sample for the FFFT

 $=>\frac{M}{L}+2$. log2(L) multiplications per input sample for the polyphase filterbank

Filter architecture : High level analysis of computation complexity

	FIR filters in //	Polyphase filterbank	FFT	
Number of Channels	L	L	L	
Number of filter coefficients	Number of filter M coefficients		0	
Number of multiplications for L point inputs	LLM	M+2L.log2(L)	2L.log2(L)	
Number of multiplications per input sample	Number of LM ultiplications input sample		2.log2(L)	
L=256, M=768	197k mult/sample	19 mult/sample	16 mult/sample	

Number of channels and channel Bandwidth trade-off

Information content =

$\log_2(\frac{area\ uncertainty\ before\ measurement})$		Ba	ndwidth	of a ch (co <u>m</u>	annel / s plex)	sample r	ate
area uncertainty aftermeasurement J	Number of channels	0.1	0.5	1	1.5	2	4
	8	2.14	2.44	2.73	2.63	2.42	1.76
	16	2.26	2.74	3.15	2.80	2.54	1.84
	32	2.22	2.88	3.45	2.98	2.69	1.93
	64	2.09	2.90	3.63	3.15	2.86	2.05
Uncertainty	128	1.99	2.91	3.75	3.28	2.99	2.14
before After	256	1.99	2.93	3.84	3.36	3.07	2.19
measurement measurement	512	2.05	2.92	3.92	3.41	3.11	2.22
incusurement incusurement	1024	2.09	3.04	3.98	3.44	3.12	2.23
best bandv ch	when the channel width is equal to the nannel spacing.		Limited 256 c	≥ I gain c channe	over Is	AIRE	BUS

Impact of sampling quantization

- ADC quantization impact on measured power level depends on
 - Input signal back-off
 - ADC number of bits

Breadboard Architecture

DEFENCE AND SPACE

Component selection for Breadboard

Parameters for the selection of FPGA and ADC

- Qualification to space environment of the component or an equivalent component
- Large ADC sampling rate (>6 Gsps, up to 20 Gsps)
- Power consumption per GHz
- Stable development tools and boards, usable immediately
- Export controls
- High RF bandwidth, to work in higher Nyquist bands

FPGAs candidates for Breadboard

		NG-ULTRA	ZYNQ Ultrascale+ RFSOC	VERSAL AI CORE	RTG4	SPARTAN6	KINTEX
		NX2H540TSC	XQZU28DR	VC1902	RT4G150	LX150	XQRKU060
	Process	28nm FD SOI	16 nm FIN-FET	7nm FIN-FET	65nm Flash	45 nm	20 nm
	Radiation hardness	radhard	latchup sensitive	unknown	radhard	rad tolerant	rad tolerant
	Provider	NanoXplore	Xilinx	Xilinx	Microchip	Xilinx	Xilinx
	Туре	SoC+FPGA	SoC+FPGA+RFADC	SOC+FPGA+NOC	FPGA only	FPGA only	FPGA only
So	part (PS)						
	Architecture	ARMv8R	ARMv8A/V7R				
	Processing core(s)	4 x R52	4xA53 / 2xR5	2xA72 / 2xR5F			
FPO	GA part (PL)						
	FPGA technology	SRAM-based	SRAM-based	SRAM-based	Flash-based	SRAM-based	SRAM-based
	FPGA size	537k LUTs	425k LUTs	900k LUTs	151k LUTs	147k LUTs	331k LUTs
	- Total LUTs						
	- Total LUTs (LUT4	537k LUTs	638k LUTs	1,350k LUT	151k LUTs	220k LUTs	497k LUTs
	equivalent)						
	Total DFFs	505k DFFs	851k DFFs	1,800k DFFs	151k DFFs	184k DFFs	663k DFFs
	DSP / Math blocks	1,344	4,272	1968	462	180	2,760
	RAM blocks (Mbit)	32 Mb	38 Mb	34 Mb	5.2 Mb	4.8 Mb	38 Mb
	HSSL SERDES (Gbps)	32@12.5Gbps	16@28Gbps	44@32.7Gbps	24@3Gbps	-	32@12.5Gbps
RF/	ADC/DAC						
	RF ADC		8@4Gsps, 12bit				
	RF DAC		8@6.5Gsps, 14bit				
NO	C / AI CORE						
	AI Cores			400@1,000 MHz			

OBDP 2021

ADC candidates for breadboard

	*********		**********		
ADC	E2V	ті	ТІ	TI	
RF	EV12AQ600	ADC08DJ3200	ADC12DJ3200QML	ADC12DJ5200RF	
Sampling Frequency	6.4 Gsps	6,4Gsps	6,4 Gsps	10,4 Gsps	Candidate
Туре	Interleaved SAR	Interleaved SAR	Interleaved SAR	Interleaved SAR	with space
Quantization	12	8	12	12	equivalent
Radiation hardness	Oui	Non	Oui	Non	
Power consumption from datasheet	6.6 W	2,8 W	3 W	4 W	*******
Interface Protocole #lanes@bitrate	ESIstream 8@12.8 Gbps	JESD204B 8@8 Gbps or 16@4 Gbps	JESD204B 8@12.8Gbps ou 16@6.4 Gbps	JESD204C 8@17.16Gbps ou 16@8.58 Gbps	
	*********		*************		

Preliminary analysis of power consumption and FPGA fill ratio (1/2)

Hypothesis

- 12.5 Gsample/s (~10 GHz Bandwidth)
- FFT256
- 12 bits in, 12 bin out, 64 samples per clock cycle.
- filterbank with 768 points window, 12 bits
- Power computation and accumulation,
 - 12 bits input
 - 36 bits output.

One instance at 195.3 MHz (Xilinx), Two instances at 97.66 MHz (NG-Ultra).

	TT 75	SPSICITY STREET	cumulator	nase titler other	ars Lastra	erface
CLB LUTs	3 2k	₹ ♥ ₹ 8k	16k	5k	14.8k	
CLB Registers	34k	8k	16k	5k	13k	
DSP	432	128	384	0	0	
RAM18	128	128	0	0	0	
serdes	0	0	0	0	2*8@12.5 Gbps	

Required ressources in Xilinx KU060 for the preliminary analysis

Preliminary analysis of power consumption and FPGA fill ratio (2/2)

Remarks :

- NG-Ultra is too small for 2 instances
- Zynq Ultrascale plus RFSOC power consumption includes integrated ADC. Very efficient system level consumption.
- VERSAL AI Core power consumption is based on preliminary power estimator.
- VC1902 has a number of LUT and DFF much larger than needed, leading to large power consumption for this use case.

	XO LYNG	Bealer PHSoc Space State	e Hintes Boale VERSAL	ICORE TCORE
	XQ ZU28DR	XQR KU060	VC1902	NX2H540T SC
FPGA freq. used	195.3 MHz	195.3 MHz	195.3 MHz	97.65 MHz
Power estimate	10.1 W	10.4 W	18.4W with AI Cores 17.5W only FPGA	12.1 W
RF ADC included	Yes	No	No	No
DSP use	22%	34%	48%	140%
LUT use	14%	23%	7%	42%
DFF use	7%	11%	3%	30%
BRAM use	12%	12%	13%	76%

Breadboard architecture

Breadboarding goals

- Representative power measurement on hardware
- Develop and debug digital signal processing code
- Precise evaluation of processing resources
- Develop and validate on a representative device the calibration and measurement strategy

Hardware Architecture:

- KU060 evaluation board
- EV12AQ600 FMC evaluation board
- Maximum bandwidth: 3.2 GHz of RF bandwidth (x2 if 2 ADC are used)

Test setup

- No RF generator can meet the required radiometric bias(0.1K)
- \Rightarrow Back-end hyperspectral is measured against a reference Analogic Back-end
- Switchable attenuators and band-pass filters are used to simulate the input signal

Test measurements

OBDP 2021

Conclusions

DEFENCE AND SPACE

