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ABSTRACT

As satellite instruments have increased in capability and
complexity, the data generated by them in-orbit has
grown to the stage where typical downlink bandwidths
are inadequate, resulting in data bottlenecks on-board.
This leads to valuable and frequently time-critical data
being hidden in amongst other data and only discovered
when or if they reach the ground. One solution to this
bottleneck problem is to increase the available bandwidth
by increasing the size of antennae on the satellite and
ground, however this has obvious cost implications.

More cost-effective solutions include prioritising the
high-value and time-critical data ahead of other items and
simply reducing the total amount of data to be down-
linked, such that the bottleneck is eliminated. The former
solution relies on the ability to discern value in the data
prior to downlink, while the latter requires that data can
be reduced (either the number of items or the size of a
single item) without loss of valuable information. These
activities are examples of information extraction and data
processing, where information or value in raw data is in-
ferred on-board, and then used to drive content-sensitive
processing of the data to improve data throughput, la-
tency, timeliness and comprehension, with consequential
benefits to mission cost and data management.

In this paper, use cases for Earth observation data are
summarised. From these, generic on-board applications
are defined which deliver data to meet these use cases
and provide a number of benefits over traditional data
provision approaches. These applications are enabled by
recent advances in data processing methods, algorithms
and training datasets, which are described. Finally, the
requirements of a processing architecture to support these
application on-board is presented, derived from an under-
standing of the system requirements and implications of
adopting such data autonomy on-board.

Key words: processing, AI, machine learning, informa-
tion, requirements, algorithm, dataset.

1. INTRODUCTION

The growing interest in on-board data processing for
Earth observation satellites has been driven by both the
needs of ground-based applications of satellite data and
the increasing challenges borne by the latest on-board
instrument technologies. On the application side, end
users of satellite data are seeking methods of acquiring
more timely data and lower latencies, supplied in a form
that is immediately useful to them. On the technology
side, instrument manufacturers are developing payloads
with higher spatial and spectral resolutions and greatly
increased acquisition rates. Such rates far exceed typical
current and near-term downlink bandwidths, resulting in
severe data bottlenecks.

Addressing the application needs leads to solutions which
also address the challenges of adopting these new in-
struments. On-board processing activities which can ex-
tract information from data, reduce the data and priori-
tise useful information can not only deliver data to end
users faster and in a more useful form, they can also filter
and intelligently compress data to reduce or eliminate the
downlink bottleneck. These on-board activities are many
and variable, depending on the on-board functionality de-
sired and the end user requirements to meet.

This work was completed as part of the ESA Technology
Research Programme activity ”Future Onboard Process-
ing and Information Extraction Algorithms” (FOPIEA).
The goal of this work was to identify suitable on-board
processing applications and technical solutions (algo-
rithm, dataset and hardware) with which to implement the
applications, leading to two breadboard demonstrators.

In this paper, generic on-board applications are presented
which may be configured to target groupings of use cases
and provide measurable end benefits to mission stake-
holders. These use cases have been solicited from a
comprehensive survey, a group workshop and one-to-
one engagements with remote sensing end users. These
applications are underpinned by enabling technologies
which leverage the state-of-the-art in embedded process-
ing and AI. These technologies include machine learning
algorithms (both traditional and deep learning), training
datasets, processing architectures and embedded comput-
ing devices. The paper summarises the algorithms which
can be used to implement the on-board applications and



the factors affecting datasets which can be used to train
and test these algorithms. Finally, a summary of the
requirements and further implications of adopting these
technologies to implement the proposed applications is
presented. This leads to several impact areas and corre-
sponding needs that must be addressed in the design of
future on-board processing systems.

2. USE CASES AND APPLICATIONS

Remote sensing use cases are the driver of any satel-
lite EO activities, whether a traditional mission such as
the Copernicus Sentinels or one of the many NewSpace
missions leveraging some degree of on-board processing.
While the technical feasibility of applications is one con-
cern, and partially addressed in Section 3, the usefulness
of any application is dependent on the need for it, and this
is driven by the many remote sensing use cases that exist.

2.1. Use Cases

The following use cases have been identified through lit-
erary sources, one-to-one engagements with remote sens-
ing specialists and group workshops. Remote sensing use
cases are many, with end users spread across industry,
academia and government. While there can be overlap
in many use cases, they can broadly be grouped into the
following categories.

Agriculture EO data enables farmers, landowners and
other stakeholders to map, monitor and manage land,
crops and other related factors, with the goal of making
their operations more efficient, reducing costs and max-
imising yield [1]. Data can also be used to monitor, pre-
dict and manage the risk of natural and manmade disas-
ters or damage. On a larger scale, EO data can be used by
governments and other bodies to detect and monitor for
illicit farming.

Defence Defence and security practices often leverage
capabilities in sensing, monitoring and tracking objects
or targets of interest [1, 2]. While also including ground
and aerial surveillance and reconnaissance, such activ-
ities have made use of satellite-based observations for
some time now. Typical defence and security use cases
include mapping of areas of interest, detection and iden-
tification of vehicles and infrastructure and monitoring of
specific sites of interest. Given the sensitive nature of
such activities, any insights extracted from satellite data
demand a high confidence in their accuracy. Specific ac-
tivities will have additional requirements in the timeli-
ness, quality and persistence of data.

Disaster Response EO data can enable the detection,
monitoring and analysis of natural and manmade disas-
ters, and facilitate timely responses to the disasters. A
quick response to events such as severe storms and earth-
quakes can significantly reduce loss of life, while some
disasters such as wildfires and floods can be mitigated or

arrested entirely by sufficiently early warning. Addition-
ally, the conditions in which disasters arise can be iden-
tified in data of sufficient accuracy and quality, including
those in which disasters are likely to occur [1, 3, 4].

Forestry and Vegetation Multispectral satellite im-
agery is a common enabler for forestry and vegetation
monitoring due to the benefit of infrared data in visual-
ising vegetation. In this context, EO data can be used to
perform forest-specific land cover classification, perform
change detection to monitor coverage and health and es-
timate damage due to deforestation, fires, floods, storms
and other disasters [5].

Hydrology Hydrological use of EO data involves the
measuring and monitoring of coastlines, inland water-
ways and movement of ice, including flow and icebergs
[1, 5]. Just as land use can be monitored, so can use
of coastal and inland water regions. More advanced in-
formation, such as water levels, can be obtained using a
combination of optical data and measurements from other
instruments such as altimeters [6].

Land Use and Land Cover Land use and land cover
mapping is commonly augmented by satellite data [7].
In addition to providing information to create online and
physical maps, this information can also be used to moni-
tor urban growth, enable infrastructure planning and per-
form large-scale change detection on urban and other re-
gions.

Meteorology Meteorological applications of EO data
include weather monitoring and prediction and atmo-
spheric science [8, 9]. Some aspects of meteorology fall
under disaster response, such as the identification of se-
vere storms, requiring quick response as with other natu-
ral disasters. The majority of use cases involve creation
and informing models of weather systems, with the goal
of providing accurate weather predictions and creating
greater understanding to benefit other areas such as cli-
mate change and resilience.

Maritime Maritime applications of EO data are pri-
marily focussed on ship detection and tracking [1, 10].
Use cases include identifying illegal activities, such as
ships without AIS (automatic identification system) or
those involved in oil spills and environmental law viola-
tion, detecting vessels in distress and monitoring traffic in
ports and other high traffic regions. Additional use cases
include monitoring of fisheries and objects or events at
sea, such iceberg detection and oil spill monitoring.

Resource Management Natural resource management
makes use of both land cover mapping, for classifying
and categorising areas with potential for extraction of nat-
ural resources, and change detection, for monitoring ex-
isting infrastructure such as mines, oil rigs and renewable
energy sites [1, 11].



2.2. Applications

The above use cases vary in terms of the instruments they
employ to capture the data, the processing applied to this
data and the ultimate form of and insights that are ex-
tracted from the data. However, they may be generalised
in terms of the operational concept used to implement
each use case. For example, many hydrological use cases
involve persistent monitoring of a specific location or re-
gion. This activity also applies to agricultural and land
asset monitoring. In each use case, the end user and data
format can be very different, but the operational concept
and data processing pipeline are broadly similar.

Nine generic applications have therefore been defined.
These applications each relate to a single operational con-
cept, defining the region of interest, duty cycles, revisit
requirements, etc. They can then be configured for a spe-
cific use case (e.g. disaster monitoring, ship tracking) by
selecting appropriate enabling solutions, algorithms and
training datasets.

Event Detection An event that has occurred or is oc-
curring is automatically detected and a notification or
alert automatically queued for downlink on the next
ground station pass. The notification can include sim-
ply the type of event that is occurring, where it is oc-
curring and when it was identified, or it can be a larger
report, indicating the severity and risk (for disasters) or
scale (e.g. for atmospheric events). Use cases include
real-time detection of disasters, illegal activities and ur-
ban events such as demolitions or protests.

Event Prediction The conditions for the occurrence of
specific terrestrial or atmospheric events, typically natu-
ral or manmade disasters or severe weather phenomena,
are predicted and identified onboard the satellite. The
satellite notifies end users such of the probability of the
event occurring and additional information such as loca-
tion and timeframe. Prediction of events based on instru-
ment data alone is challenging, and so data fusion would
be required to employ secondary sources such as ad-
ditional instruments, on-board sensors and periodically-
updated databases. Use cases are typically limited to
naturally-occurring events such as weather phenomena
and natural disasters, although it may be possible to pre-
dict some unintentional human-caused events such as ac-
cidents or oil spills.

Event Monitoring Event monitoring focusses on high-
frequency reporting of a target following an event such
as a natural or manmade disaster. It differs from event
detection in that the event and its location is presumably
already known and must be monitored for some period
of time. The changes to a location or feature following
an event are often, but not exclusively, transient and on a
shorter timescale than typical EO changes. The satellite
returns information on the event in an ongoing capacity,
reporting on absolute properties (e.g. scientific measure-
ments, severity, etc.) and changes (e.g. loss of forest due
to wildfire, spread of oil, etc.). Use cases include mon-

itoring of disasters, illicit activities and more innocuous
events such as protests.

Persistent Monitoring Monitoring of permanent or
less-transient features constitutes a distinct monitoring
application from monitoring of a specific event. In this
case, a single or multiple locations or assets are moni-
tored and reported on a regular (or change-triggered) fre-
quency over a long period of time. The satellite returns a
regular report on the target, which may be delivered on a
frequency matching that predicted of changes in the tar-
get, or this report could be specifically triggered when
changes are sufficiently distinct. Use cases include moni-
toring of agriculture, environment in various sensitive lo-
cations (such as coastlines) and work sites for surveil-
lance of ground assets.

Damage Assessment Locations, structures or other tar-
gets which have suffered damage are targeted for assess-
ment. Causes of damage may be included in the assess-
ment, but severity and information to enable response or
recovery are more critical. Use cases include assessment
of building damage, damage to agriculture due to flood-
ing, drought or otherwise and cause-specific instances
such as damage due to wildfire, flooding or storms.

Global Mapping The entirety or majority of the planet
is imaged to provide a global map of some set of features,
typically land cover (water, forestry, urban, etc.) or land
use (fishing, recreation, industrial, etc.). Coverage may
be truly global, or focussed on a specific terrain type, e.g.
urban, water, rainforest. Land cover is readily identifi-
able in satellite imagery. For other use cases, sufficient
input data quality or data fusion is required to extract the
desired information.

Localised Mapping A set of features are imaged and
mapped for specific location(s). This could be standard
land use mapping targeted at a specific region (e.g. coun-
try, state) or may be more precise, returning mask layers
indicating properties such as crop health or exploitation
potential. In the latter case, sufficient input data quality
or data fusion is required to extract the desired informa-
tion. This application differs from persistent monitoring
in that it is concerned with identifying the content of a lo-
cation via raster/vector maps without reporting any more
detailed analysis.

Object Detection & Tracking A specific or set of
objects/targets are detected from orbit, reported to end
users, and tracked to enable an appropriate ground re-
sponse, e.g. law enforcement. Targets may be specific
to an environment, such as security violations at specific
sites, or coverage may be global, such as illegal ships
ocean-wide. Use cases are typically defence and security-
related, but can also include scientific applications such
as animal tracking for migration research, etc.

Scientific Measurement A specific property is mea-
sured from orbit, typically using non-optical data such as
SAR, microwave radiometry, altimetry and LiDAR. This
property can be provided as a simple measurement (e.g.



moisture level for specific field) or as a single-channel,
georeferenced “heatmap” (or equivalent for non-image
data), where pixel intensities related to measurement val-
ues. Use cases include biomass measurement, elevation
mapping, global temperature mapping and soil moisture
level measurement, among others.

3. INFORMATION EXTRACTION ALGO-
RITHMS

The applications described in Section 2.2 can be re-
alised by implementing various algorithms to support
pre-processing, information extraction and data auton-
omy tasks. Information extraction tasks are typically per-
formed by machine learning models. These can be tradi-
tional, such as random forest or support vector machines,
or more modern solutions such as deep learning models.
This section briefly summarises the available algorithms
for information extraction, focussing on these with prior
application to remote sensing.

3.1. Traditional Methods

There are several classical machine learning methods
which are popular for classification tasks in particular,
with applicability to other tasks such as regression and
change detection.

Pre-Processing and Feature Extraction When using
classical machine learning algorithms, feature extraction
is an important first stage of the pipeline in many appli-
cations. Unlike deep learning, where it is common for
the model to learn from large amounts of training data
which features of the data are important, classical ma-
chine learning algorithms generally perform better when
the number of features in the data has been reduced.

Common methods of pre-processing and feature extrac-
tion include Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), Linear Discriminant
Analysis (LDA), and factor analysis.

Support Vector Machines A support vector machine
(SVM) [12] is a supervised learning model, linearly sep-
arating multiple classes in a high dimensional space.
SVMs are widely used in remote sensing data processing
pipelines as the final classification step [13]. They have
previously been implemented on-board the EO-1 space-
craft, processing data from the Hyperion instrument [14].

Random Forest Random forest is an ensemble learn-
ing method [15], combining multiple models derived
from other algorithms and returning a summary statis-
tic of the prediction or classification produced by each
model. In this way, overfitting is avoided.

Naı̈ve Bayes Naı̈ve Bayes classifiers are simple classi-
fiers that rely on Bayes’ theorem. They are “naı̈ve” in
the sense that independence between each element is as-
sumed.

Strengths of Naı̈ve Bayes classifiers include their sim-
plicity and ease of implementation, good performance
and scalability. One weakness is that the assumption of
conditional independence is rarely true, another it is that
they are often surpassed in performance by other types of
models when properly trained and tuned.

K-Nearest Neighbour K-Nearest Neighbour (k-NN)
algorithm is a supervised algorithm that can be used for
both classification and regression tasks. It works on the
assumption that samples that belong to the same class
or have the same numerical properties (in regression ap-
plications) are in close proximity in the feature space
[16, 17, 18].

3.2. Deep Learning Methods

Deep learning solutions can be categorised by the ar-
chitecture type, although some specific architectures are
named where these are prominent. Benefits of deep learn-
ing methods over traditional methods are primarily in
their versatility, lacking the more rigid structure required
by traditional methods.

Convolutional Neural Networks Convolutional neu-
ral networks (CNN) are deep learning models which ac-
cept 2D or 3D input arrays (typically images) and re-
turn outputs relating to the presence of features of inter-
est within the array. They do so by performing convolu-
tions and other mathematical operations on the input data
across several layers. A CNN can be trained using super-
vised learning, where the features of interest are known
and specified, or unsupervised learning, where the fea-
tures are unknown.

CNNs can be used to solve classification problems and
can also be used for other tasks such as change detection
and anomaly detection.

Object Detection Networks Object detection net-
works are a subset of CNN where the returned result in-
cludes both identified features and a location within the
data, typically described by a bounding box. Popular
implementations include Single Shot Detector and You
Only Look Once (YOLO) [19].

Semantic Segmentation Networks Semantic segmen-
tation networks are a subset of CNN where the classifica-
tion is performed on each pixel in the data. Of semantic
segmentation networks, U-Net is one of the most promi-
nent [20], with some effort made to reduce its size for
deployment on embedded devices [21].

Autoencoders Autoencoders are deep neural networks
that reproduce their input at their output layer. With the



correct training methods, such networks are more effec-
tive that traditional compression techniques such as PCA
[22] and can be used to learn an efficient representation
for dimensionality reduction. They can also be used for
error correction [23].

Neural Regression Neural regression models return
values from a continuous number set rather than discrete
outputs, as is the case with classification.

3.3. Datasets

Key to the successful use of any machine learning model
is training data. With the ever-growing use of machine
learning in remote sensing sciences, labelled datasets de-
rived from a variety of EO missions have appeared, tar-
geting a variety of applications. Of these datasets, there
are a variety of factors that determine their suitability
for a given use case and on-board processing application.
These factors are summarised in this section.

Some popular datasets include:

BigEarthNet A land cover dataset for classification, de-
rived from Sentinel-1 and 2 [24].

DOTA A series of object detection datasets with a large
number of labels, derived from Google Earth and
satellite and drone imagery [25].

EuroSAT A land cover dataset for classification, derived
from Sentinel-2 [26].

SEN12MS A large land cover dataset for semantic seg-
mentation, derived from Sentinel-1 and 2 and using
MODIS land cover rasters as labels [27].

SpaceNet A series of datasets for several different appli-
cations [28].

xView Two datasets related to object detection and
building damage, respectively [29, 30].

The suitability factors of these and other datasets are de-
scribed below.

Application Typically indicated by the labels or an-
notations used in the dataset. For example, land cover
datasets can include generic labels such as ”agriculture”,
”urban”, and ”forest” or use those derived from a par-
ticular classification such as CORINE or MODIS. La-
bels for classification tasks may describe specific features
(e.g. ”ship”, ”cloud”, ”burnt area”) or discrete states such
as damage or cloud cover levels. Labels for regression
tasks can be continuous, for example describing scientific
properties such as height or moisture level.

The dataset labels have the greatest impact on the use
cases that can be targeted with any network trained on
the dataset.

Label Format Labels may be specified as a single
string describing a training chip or tile, a string with
bounding box coordinates or a binary pixel mask with
an associate annotation. The format provided impacts the
classification tasks that can be performed. Labelled chips

and tiles are suitable for simple chip classification tasks,
labelled bounding boxes are best-suited for object detec-
tion and pixel masks are intended for semantic segmenta-
tion tasks.

Ground Truth The veracity of a dataset’s labels is
important for assurance of any IE tasks trained on the
dataset. Creation of datasets by fusing georeferenced
images with another data source (e.g. weather phenom-
ena, land cover databases, emergency alerts) is relatively
straightforward. More difficult is ascertaining the accu-
racy of these labels.

Uncorrected, poor ground truth can result in difficulty
training the network and inaccurate inference results.

Size and Diversity As with all machine learning prob-
lems, a sufficient quantity and diversity of training sam-
ples are required to ensure the network is both accurate
and sufficiently able to generalise. The diversity of the
samples should meet the requirements of the use case
and mission concept, reflecting variations in geographi-
cal location, time of day or year and in the appearance of
features.

Instrument Source A key issue for on-board machine
learning. While many ground-based ML use cases use
similar sources (e.g. Landsat 8, Sentinel-1, Sentinel-2)
for both dataset training and analysis, this is often not the
case with on-board applications. Many datasets are de-
rived from the Sentinel-2 MSI or the Landsat 8 OLI, and
the instrument ultimately providing data for processing
in-orbit is unlikely to match either of these instruments
exactly, in terms of the resolution, spectral bands and
unique sensor anomalies. Indeed, many on-board mod-
els are likely to be trained for instruments which haven’t
yet been launched, or at haven’t at least acquired repre-
sentative training or test data.

As a consequence, it can be necessary to transform a
dataset to better match the input data during inference,
or vice-versa. With the additional lack of validation or
test data, the true accuracy of the network is unknown
until in-orbit testing, at which point training updates will
almost certainly be required.

Processing Level As with the previous factor, the pro-
cessing or product level of the data is also a key issue
for on-board ML. The majority of datasets employ data
which has undergone some sort of pre-processing, such
as radiometric and geometric correction and georeferenc-
ing. As a result, the instrument data must undergo the
same pre-processing during operation so that the model
recognises it. Alternatively, a model trained on raw data
may be able to recognise data directly from the instru-
ment. There are many challenges to this approach, how-
ever, including lack of raw training datasets, anomalies in
raw data and the format itself of raw data.

Licence Many labelled datasets are open access and
available for both research and commercial use. Oth-
ers, typically those derived from commercial missions



and platforms such as Google Earth Engine, are far more
restrictive. Many datasets employ Creative Commons
licences, restricting commercial usage or enforcing the
sharing of any modifications to the dataset.

4. IMPLICATIONS AND NEEDS OF ON-BOARD
PROCESSING APPLICATIONS

Adoption of the described applications and their process-
ing and information extraction tasks impacts the on-board
data processing system in a number of ways.

Interfaces Interfaces with data handling and data stor-
age components are required to handle and store the in-
puts to and outputs from the processing components, as
well as any additional data required, such as neural net-
work weights and reference samples for change detec-
tion. In-orbit updates of models and weights also has
the additional requirement that both model inputs (raw or
processed data) and outputs (information) can be down-
linked periodically or at will, to facilitate re-training on
the ground.

On-the-Fly vs Offline Processing Due to the acquisi-
tion rates of modern instruments and the relatively limited
processing hardware currently used on-board EO satel-
lites, real-time processing of instrument data is a chal-
lenge. This may be overcome by multi-stage informa-
tion extraction, for example using a simple, fast model to
evaluate cloud cover and pass only data with low cloud
cover, storing the remainder for offline processing during
eclipse.

Reconfigurability Reconfiguration of algorithms such
as ML models and their associated weights is a strict re-
quirement for the processing system, the command and
data handling (C&DH) subsystem and the uplink infras-
tructure. Support for file uplinks which take multiple
passes is vital to enabling ongoing improvement of ML
models and other algorithms. Without this capability, the
satellite would be limited to use of algorithms as pack-
aged at launch. This may be acceptable where the exact
flight configuration used for processing has been flown
before and test data is available, but not otherwise. More
capable uplinks, featuring rates from tens to hundreds of
Mbps, will also be very desirable to support these file up-
loads. A combination of both multi-pass uplinks and in-
creased bandwidth is recommended to provide sufficient
future proofing.

Payload reconfiguration is also impacted by on-board
processing where autonomous quality checks or anomaly
detection can lead to payload performance improvements
such as cal/val and active optics adjustments.

Fault Tolerance Fault tolerance must be considered on
various levels of the system hierarchy and in both soft-
ware and hardware. Many space-grade devices include
built-in error checking, while component redundancy is
common in newer devices with less space heritage. In

devices without built-in error checking, it is necessary
to consider the impact of deploying a computationally-
intensive and data-critical algorithms such as neural nets.
A portion of the FPGA logic, for example, must be re-
served for error checking and the size of the network or
other algorithms as deployed on the device must facilitate
this.

Criticality Data processing tasks are typically consid-
ered non-mission-critical in that they are unlikely to af-
fect critical systems such as power, ADCS and comms. A
move towards mission autonomy tasks (potentially driven
by outputs of the data processing system) will increase
the criticality of any autonomous components. The large
state space of any ML components makes assessment of
the reliability and replicability these components and the
large system a significant issue which must be carefully
addressed during development time and during operation
with sufficient error checking and fault mitigation strate-
gies.

5. REFERENCE PROCESSING ARCHITEC-
TURE

Figure 1 shows a functional architecture for on-board
data processing and management. This architecture has
been derived to meet the needs of a generic EO appli-
cation. The operation of the processing system can be
described as follows:

1. The payload data is acquired by the payload in its
raw format.

2. The raw payload data is pre-processed to correct for
radiometric and geometric defects and format the
data such that it is recognisable and comprehensible
by the information extraction algorithms.

3. The processed data is passed through one or more in-
formation extraction algorithms to extract informa-
tion such as features, masks, value and other meta-
data.

4. The extracted information is used to create data
products comprising metadata and the data in a spec-
ified form, e.g. georeferenced tile, feature mask, etc.
It may also be reduced at this point by compress-
ing or removing low-value regions of the data. Data
value can be determined at this point and included
in the product.

5. The compressed data products are then indexed and
ordered for downlink prioritisation based on their
perceived value.

6. The queued data is downlinked on the next ground
station pass.

The architecture is annotated for the following:

(a) Raw data acquired by the payload is stored in mass
memory immediately following acquisition. This
ensures that the original data is preserved in the
event of an anomaly in the processing pipeline and
can be compressed and downlink as is currently
done on institutional missions.
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Figure 1. Reference processing architecture for data pro-
cessing and autonomy.

(b) Further pre-processing of the data may be performed
after information extraction. For example, inference
with a simple, high-speed algorithm could be per-
formed in real-time to extract some initial insights.
Based on these results, the data could then be dis-
carded, stored in mass memory for further process-
ing later or passed back to pre-processing for im-
mediate further processing. For example, anomaly
detection may indicate that further geometric cor-
rections are required.

(c) Real-time telemetry may be received from AOCS to
enable pre-processing tasks such as radiometric and
geometric corrections and data autonomy tasks such
as the creation of georeferenced data products and
feature geolocations. This is implied use of data fu-
sion.

(d) As data autonomy is limited to processing and
decision-making around the payload data, there are
no interfaces with mission critical subsystems, in-
cluding the payload itself. Acquisition activities
are performed via onboard schedule or commanding
and planned on the ground.

6. CONCLUSIONS

In this paper, the many use cases of Earth observation
data have been generalised to allow the definition of
generic on-board applications. These on-board applica-
tions are comprised of several complementary tasks, en-
abling EO payload to be acquired, understood and de-
cisions made to improve the throughput, timeliness and
value of the data to the benefit of end users. The applica-
tions and their constituent tasks are enables by the latest
advances in deep learning algorithms and the prolifera-
tion of training datasets, suitable for such algorithms and
targeting the EO use cases.

A generic processing reference architecture has been de-
fined to meet the needs of these applications. Needs that
must be addressed include those of the end user, the re-
quirements of the applications for specific functionality
(e.g. classification algorithms, change detection), train-
ing datasets for specific use cases and the needs of and
other implications on the on-board processing system,
such as considerations for error checking, fault tolerance
and real-time processing.

The findings described in this paper are currently being
referenced in the delivery of two demonstrations of on-
board data processing and information extraction, tar-
geting use cases for an institutional and a NewSpace
mission. These demonstrators will test the feasibility
and benefits of implementing two of the defined applica-
tions on-board representative satellite hardware, includ-
ing space-ready data processing devices.
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