There is a newer version of this record available.

Dataset Open Access

Dataset: Environmental Impact on the Long-Term Connectivity and Link Quality of an Outdoor LoRa Network

Pei Tian; Fengxu Yang; Xiaoyuan Ma; Carlo Alberto Boano; Xin Tian; Ye Liu; Jianming Wei


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.5519724</identifier>
  <creators>
    <creator>
      <creatorName>Pei Tian</creatorName>
      <affiliation>Shanghai Advanced Research Institute, Chinese Academy of Sciences</affiliation>
    </creator>
    <creator>
      <creatorName>Fengxu Yang</creatorName>
      <affiliation>Shanghai Advanced Research Institute, Chinese Academy of Sciences</affiliation>
    </creator>
    <creator>
      <creatorName>Xiaoyuan Ma</creatorName>
      <affiliation>SKF Group</affiliation>
    </creator>
    <creator>
      <creatorName>Carlo Alberto Boano</creatorName>
      <affiliation>Graz University of Technology</affiliation>
    </creator>
    <creator>
      <creatorName>Xin Tian</creatorName>
      <affiliation>Shanghai Advanced Research Institute, Chinese Academy of Sciences</affiliation>
    </creator>
    <creator>
      <creatorName>Ye Liu</creatorName>
      <affiliation>Nanjing Agricultural University</affiliation>
    </creator>
    <creator>
      <creatorName>Jianming Wei</creatorName>
      <affiliation>Shanghai Advanced Research Institute, Chinese Academy of Sciences</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Dataset: Environmental Impact on the Long-Term Connectivity and Link Quality of an Outdoor LoRa Network</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>LoRa</subject>
    <subject>ChirpBox</subject>
    <subject>Connectivity</subject>
    <subject>Link quality</subject>
    <subject>Internet of Things</subject>
    <subject>Physical layer settings</subject>
    <subject>SX1276</subject>
    <subject>Temperature</subject>
    <subject>Weather</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-09-17</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5519724</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4736501</relatedIdentifier>
  </relatedIdentifiers>
  <version>v1.0.7</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This repository contains the long-term connectivity and link quality&amp;nbsp;dataset collected on &lt;a href="https://chirpbox.github.io/"&gt;ChirpBox&lt;/a&gt;&amp;nbsp;over 4&amp;nbsp;months&amp;nbsp;(May&amp;nbsp;--&amp;nbsp;September&amp;nbsp;2021)&amp;nbsp;in&amp;nbsp;the&amp;nbsp;city&amp;nbsp;of&amp;nbsp;Shanghai,&amp;nbsp;China.&amp;nbsp;&lt;/p&gt;

&lt;p&gt;In&amp;nbsp;addition&amp;nbsp;to&amp;nbsp;the&amp;nbsp;dataset&amp;nbsp;itself,&amp;nbsp;we&amp;nbsp;provide&amp;nbsp;evaluation&amp;nbsp;scripts&amp;nbsp;for&amp;nbsp;data&amp;nbsp;analysis&amp;nbsp;and&amp;nbsp;visualization,&amp;nbsp;in&amp;nbsp;order&amp;nbsp;to&amp;nbsp;facilitate&amp;nbsp;data&amp;nbsp;exploration&amp;nbsp;and&amp;nbsp;re-use. To make it clear how to use the scripts, we provide a &lt;em&gt;Jupyter notebook --&amp;nbsp;&lt;/em&gt;&lt;a href="https://zenodo.org/record/5512850/files/dataset.ipynb?download=1"&gt;dataset.ipynb&lt;/a&gt;&amp;nbsp;for dataset visualization. Please check the &lt;a href="https://nbviewer.jupyter.org/urls/zenodo.org/record/5512850/files/dataset.ipynb/%3Fdownload%3D1"&gt;notebook viewer&lt;/a&gt; for a preview.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;List of files:&lt;/strong&gt;&lt;/p&gt;

&lt;ol&gt;
	&lt;li&gt;&lt;em&gt;dataset_03052021_15092021.csv&lt;/em&gt;

	&lt;ul&gt;
		&lt;li&gt;The dataset includes LoRa connectivity and link quality, as well as environmental information, collected from May 3 to September 15, 2021.&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;&lt;em&gt;data_analysis.py&lt;/em&gt;
	&lt;ul&gt;
		&lt;li&gt;The script for dataset analysis and visualization. One can use the functions in this script to derive network-level statistics (e.g., in terms of average number of correctly-exchanged packets), link-level statistics (e.g., in terms of SNR, RSS, and PRR), and node-level statistics(e.g., in terms of number of neighbours and temperature evolution over time).&lt;/li&gt;
	&lt;/ul&gt;
	&lt;em&gt;metadata_processing.py&lt;/em&gt;

	&lt;ul&gt;
		&lt;li&gt;The script for pre-processing metadata into CSV files.&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;&lt;em&gt;dataset.ipynb&amp;nbsp;&lt;/em&gt;
	&lt;ul&gt;
		&lt;li&gt;Jupiter notebook with dataset visualization and metadata pre-processing examples.&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;&lt;em&gt;dataset_metadata.zip&lt;/em&gt;
	&lt;ul&gt;
		&lt;li&gt;Metadata of the dataset&amp;nbsp;in TXT and JSON formats.&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;&lt;em&gt;topology_map.png&lt;/em&gt;
	&lt;ul&gt;
		&lt;li&gt;A map of node deployment for creating topology maps.&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
&lt;/ol&gt;</description>
  </descriptions>
</resource>
622
726
views
downloads
All versions This version
Views 62211
Downloads 72611
Data volume 211.8 GB3.1 MB
Unique views 3278
Unique downloads 2856

Share

Cite as