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Abstract

Wireless Body area networks (WBANs) consist of sensors that continuously

monitor and transmit real time vital signals to a nearby coordinator and

then to a remote terminal via the Internet. One of the most important sig-

nals for monitoring in WBANs is the electrocardiography (ECG) signal. The

design of an accurate and energy efficient ECG telemonitoring system can

be achieved by: i) reducing the amount of data that should be transmit-

ted ii) minimizing the computational operations executed at any transmit-

ter/receiver in a WBAN. To this end, compressed sensing (CS) approaches

can offer a viable solution. In this paper, we propose two novel CS based

ECG reconstruction algorithms that minimize the samples that are required

to be transmitted for an accurate reconstruction, by exploiting the block

structure of the ECG in the time domain (TD) and in an uncorrelated do-

main (UD). The proposed schemes require the solutions of second - order cone
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programming (SOCP) problems that are usually tackled by computational

demanding interior point (IP) methods. To solve these problems efficiently,

we develop a path-wise coordinate descent based scheme. The reconstruction

accuracy is evaluated by the percentage root-mean-square difference (PRD)

metric. A reconstructed signal is acceptable if and only if PRD < 9%. Sim-

ulation studies carried out with real electrocardiographic (ECG) data, show

that the proposed schemes, operating in both the TD and in the UD as

compared to the conventional CS techniques, reduce the Compression Ratio

(CR) by 20% and 44% respectively, offering at the same time significantly

low computational complexity.
Keywords: Compressed Sensing, Block Sparsity, Wireless Body Area

Networks, Real-time ECG monitoring.

1. Introduction

Recently, there has been increasing interest from researchers, system de-

signers, and application developers on a new type of network architecture

generally known as Wireless Body Area Network (WBAN). A WBAN is a

collection of low-power, miniaturized, lightweight wireless sensor nodes that

continuously monitor human’s physiological activities and actions [1], such

as health status and motion patterns. The real time vital signals are trans-

mitted to a nearby body node coordinator (BNC) (e.g, smart phone) via

ultra-low-power short-haul radios (e.g., ZigBee, Bluetooth), and then to a

remote terminal (e.g., a hospital) via the Internet [1, 2]. One of the most

important signal for monitoring and analyzing in WBANs is the electrocar-

diography (ECG) signal. The characteristic parameters of an ECG signal
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(i.e., heart beat rates, morphology, dynamic behaviors) can be used for diag-

nosis of heart diseases such as myocardial ischemia, arrhythmia and cardiac

infarction. ECG telemonitoring systems, relieve patients from the need of

visiting hospitals frequently and allows the continuous and ubiquitous mon-

itoring of their ECG.

Apart from the obvious advantages, ECG telemonitoring requires new

schemes and algorithms to be implemented in order to optimize i) the energy

consumption and ii) the total hardware cost both in the transmitter and

the receiver. Note that 73% of the total power consumption at a biosensor,

is consumed to the RF power amplifier (PA) [3]. As a result, low energy

consumption significantly increases the battery lifetime of the biosensor. In

addition, the hardware cost reduction makes the telemonitoring system eco-

nomically viable and more easily accepted by the individual customers. Both

requirements motivated the design of new ECG compression/reconstruction

schemes, with high compression ratio capabilities and reduced computational

requirements at both the transmitter and the receiver. The main drawback

of conventional ECG compression scheme [4, 7, 10, 8, 9], is the increased

computational compression requirements.

The fact that the ECG signal consists of both high activity (P, QRS and

T waves) and low activity periods (e.g, isolectric lines between beats) that

are less important, motivated researchers to develop schemes that exploit

this information either at the transmitter or at the receiver. To exploit this

signal property at the transmitter, low - rate adaptive sampling schemes

[11, 12, 13, 14] may be employed. Those schemes exploit ECG signal charac-

teristics by using a circuit that executes an activity detection algorithm that
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identifies the high frequency regions of the signal and adjust the sampling

rate [13]. An alternative solution that reduces both the processing executed

and the data that should be transmitted, is the exploitation of the ECG

signal characteristics at the receiver, by applying the compressive sensing

(CS) theory for signal compression/reconstruction [15, 16, 17, 18]. By apply-

ing CS to the problem of ECG telemonitoring, the compression complexity

at the transmitter is significantly reduced [17, 16], since the compression is

performed through a simple linear encoding operation.

The CS based reconstruction of the original ECG signal is performed af-

ter digitization of the signal at the receiver by exploiting the structure of

the original signal in both the time and wavelet domain. The authors in [17]

achieved high compression rates (CR) of ECG and EMG biosignal in the time

domain. Though in order to achieve that, they apply in advance a dynamic

thresholding technique that firstly tracks the DC level of the signal and then

tunes the signal sparsity by setting to zero the small signal values. The main

drawback of this method is the increased computational processing at the

transmitter and the fact that, useful parts of the signal can be destroyed

during this process. The authors in [16] exploited the sparse structure of the

ECG in the wavelet domain by employing conventional compressed sensing

(CS) schemes. However, the achieved compression ratio (CR) as compared

to traditional discrete wavelet based ECG compression schemes [10], where

a fixed percentage of wavelet coefficients are zeroed, was 20% lower. Never-

theless, the significantly low compression complexity renders the CS method,

promising in wireless ECG telemonitoring applications. Finally, Zhang et al.

[18] was the first that proposed the use of a generic block sparse Bayesian
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learning framework to reconstruct fetal ECG recordings by exploiting the

block sparsity. The authors showed that the aforementioned framework can

reconstruct the fetal ECG recordings with high quality but with increased

computational cost.

To the best of our knowledge, this is the first CS based work that ex-

ploits in a computational efficient way, key characteristics (e.g., block spar-

sity, intra-block correlation and presence of dc offset) of the adult ECG signal

in both the time domain (TD) and in an uncorrelated domain (UD) that fur-

ther promotes block sparsity. We propose efficient low complexity compres-

sion/recovery algorithms that are computational efficient and achieve signif-

icant CR reduction, compared to conventional CS approaches [17, 16]. The

proposed schemes are the first CS based schemes that outperform even the

computational demanding discrete wavelet based ECG compression schemes

[10, 8, 9]. Our main contributions can be summarized in the following:

• We eliminate the need of estimating and removing the dc level of the

ECG signal at the transmitter (i.e., biosensor) [17] by considering it

as an unknown parameter that can be estimated at the receiver. This

modification allows us also, to track any abrupt shift in baseline due to

movement of the adult patient while the ECG is being recorded [20].

• We propose two novel ECG reconstruction schemes that exploit the

block sparse structure of the transmitted signal in the TD and in

an UD, that further promotes block sparsity, by formulating second-

order cone programming (SOCP) problems which can be solved by a

host of computational demanding interior point (IP) methods. These

schemes achieve the same reconstruction accuracy with the default CS
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approaches, by using 20% and 44% less samples respectively. In addi-

tion, we show through extensive evaluation that the proposed schemes

achieve CRs that are even higher than the traditional discrete wavelet

based ECG compression schemes [10, 8, 9], which are much more com-

putational demanding.

• We develop a novel scheme that is based on the path-wise coordinate

descent approach [21] and significantly reduce the computational cost

of the conventional IP methods, applied for the recovery of the ECG.

The derived low complexity schemes achieve similar recovery properties

with those that apply IP methods, offering at the same time significant

savings in complexity.

The paper is outlined as follows: Section 2, introduces the concepts and

terminology related with CS theory and gives a short description of the struc-

ture of the ECG signal in TD. In Section 3, we present several low complexity

encoding strategies with different requirements (i.e. communication, storage,

computational) that may be employed in the biosensor, for compressing the

ECG signal. Section 4, introduces novel recovery algorithms that exploit the

structure of the ECG signal either in the TD or in an UD by employing

computational demanding IP methods. To reduce the complexity of those

methods, we propose a low complexity path-wise coordinate descent based

solver. The proposed schemes are evaluated through extensive simulations

which are presented in Section 5, followed by conclusions in Section 6.
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2. Preliminaries

2.1. Compressive Sensing Framework

CS provides approaches for reconstructing a sparse signal x ∈ RN by us-

ing a small number of linearly coded measurements [23, 24, 25]. The encoded

measurements, y ∈ RM , are generated using a random matrix A ∈ RM×N

with independent and identically distributed (i.i.d.) elements. In mathemat-

ical terms, y = Ax + w, where w is a vector with noise samples.

2.1.1. Reconstruction by Exploiting Sample Sparsity

In the noise free case (i.e., w = 0N), the vector x may be ideally recovered

from the vector y by solving the minimization problemminx {‖x‖0 : y = Ax}.

In order to make the signal reconstruction robust to the presence of noise, the

constraint of the problem may be relaxed as minx {‖x‖0 : ‖y−Ax‖2
2 ≤ ε},

where ε is a predefined error tolerance. This approach, however, cannot be

used for practical applications, since it is computationally intractable. CS

provides a solution to this issue, by replacing the `0 quasi-norm with the

convex `1-norm and by solving a new optimization problem that can be for-

mulated as minx {‖x‖1 : ‖y−Ax‖2
2 ≤ ε}, where the `1-norm is defined as

‖x‖1 = ∑N
i=1 |xi|. By employing Lagrange relaxation, it is possible to effi-

ciently find an approximate solution by solving the problem:

x̂ := arg min
x
‖y−Ax‖2

2 + λ‖x‖1, (1)

where the parameter λ controls the balance between two optimization ob-

jectives: i) the noise level ‖y−Ax‖2
2 and ii) the sparsity of vector x. Algo-

rithmically, the convex optimization problem in eq. (1), known as LASSO

problem, can be tackled by any Second-Order Cone Program (SOCP) solver.
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2.1.2. Reconstruction by Exploiting Block Sparsity

A block sparse signal is a signal that consists of clusters of non-zero

coefficients.In mathematical terms, a vector x can be formulated as a con-

catenation of R blocks of length d, as follows:

x = [ x1, . . . , xd︸ ︷︷ ︸
xT [1]

, xd+1, . . . , x2d︸ ︷︷ ︸
xT [2]

, . . . , xN−d+1, . . . , xN︸ ︷︷ ︸
xT [R]

]T , (2)

where x [i] denotes the ith block and N = Rd. Vector x is called block k-

sparse if x [i] consists of d zeros for at most R − k indices i. Similar to eq.

(2), the measurement matrix A can be represented as a concatenation of

sub-matrices A [i] of size M × d, i.e., A = [ A [1] A [2] . . . A [R] ].

By using `1-relaxation for reconstructing x, we ignore the fact that the

signal is block-sparse, i.e., the non-zero entries occur in consecutive positions.

To exploit block sparsity, it is possible to reconstruct the vector x by solving

the optimization problem as follows:

x̂ := arg min
x
‖y−

R∑
i=1

A [i] x [i] ‖2
2 +

R∑
i=1

λ‖x [i] ‖2, (3)

which is also known as group LASSO problem [21, 22].

2.2. ECG Signal Model

By inspecting fig. 1 it is easily shown that the location of the significant

coefficient (i.e. the QRS complex, as well as T and P waves) cluster in

blocks. We assume that the signal to be transmitted contains noise itself and

a dc offset that may vary in time due to the movement of a patient while

his ECG is being recorded [20]1. Thus, the samples that correspond to the

1According to [20, fig. 6] an abrupt shift of the baseline may occur due to movement

of the patient while the ECG is being recorded.
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Figure 1: Typical one cycle ECG tracing.

low activity regions (e.g., isoelectic line), which contain less information are

usually larger than zero due to the presence of the dc bias. Therefore, under

the assumption that the dc value remains constant during the sampling of

an N -sample segment, a recorded ECG segment may be written as:

u = x + dc1N + w, (4)

where u = [u1, . . . , uN ]T are samples of a noisy signal segment, 1N is an

N × 1 vector of all ones, dc is a scalar value that correspond to the unknown

dc level of the signal, x = [x1, . . . , xN ]T where xi ∈ R is a block sparse signal,

and w = [w1, . . . , wN ]T is the signal noise. To be able to efficiently apply the

conventional CS based methods presented in Section 2, we should remove this

dc bias from the recorded signal values, prior to the encoding process that is

described in Section 3. By making this formulation we are able to estimate

both the dc value and the vector x coefficients at the receiver, eliminating

the need of tracking it and removing dc at the transmitter [17].
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3. Compression of the ECG Segment

For each segment we perform compression by generating M < N random

linear combinations as follows:

y = Au = Ax + dcA1N + w̃ (5)

where w̃ = Aw and A is a matrix of dimension M ×N , with stochastically

independent random entries. There are several ways of constructing matrix

A that directly affects i) the storage and processing requirements at the

transmitter side, ii) the communication load and iii) the storage requirements

and the recovery error at the receiver. Below we present the most widely used

sensing matrices in the literature of CS [28]:

Gaussian Random Encoding

By selecting the coefficient Ai,j ∼ N
(
0, 1/
√
N
)

as Gaussian i.i.d. el-

ements the recovery conditions are satisfied. Even though the authors in

[16] showed that the quantization of the Gaussian elements do not affect

significantly the signal quality loss, the aforementioned choice requires i) the

implementation of a Gaussian distributed random generator, ii) the multipli-

cation of the ECG samples with real values iii) the storage of a large matrix

with real values.

Binary Random Encoding

An alternative approach is to select the i.i.d. entries of matrix A from the

Bernoulli distribution, i.e. Ai,j = ±1/
√
N with probability 0.5. It has been

shown that the aforementioned matrix reduces significantly the processing
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at the transmitter, while satisfying the recovery conditions. Note that the

transmitted data are generated by simply adding/subtracting the original

ECG samples.

Sparse Binary Random Encoding

To reduce even more the required compression complexity, the entries Ai,j

may be selected according to [29]: Ai,j are either {1, 0} with probabilities

{1/s, 1− 1/s} where s is a parameter that determines the degree of sparsity

of the sensing matrix A. The authors in [29] showed that sparse random ma-

trices still yields good recovery properties. The optimal choice of s depends

on the structure of the ECG signal and the decoding algorithm that is used

at the receiver side.

To increase even more the compression efficiency of the CS based en-

coder presented above, an architecture similar to the one presented in [16]

may be adopted. Fig. 2 presents a block diagram of both the transmitter

and receiver architecture. According to this diagram, the encoded samples y

pass through: i) a redundancy removal unit ii) a quantization unit and iii) a

Huffman encoding unit. According to [16], in cases where we perform com-

pression with the same random matrices, a large inter-packet redundancy is

introduced. This redundancy should be removed prior to Huffman encoding

and wireless transmission. To that end, the redundancy removal unit com-

putes the difference between consecutive vectors, and only this difference

is further processed. It was shown in [16], that the output of the redun-

dancy removal unit can be sufficiently represented using 9 bits. As a result,

the quantization unit performs quantization using a 512 level uniform quan-
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Figure 2: Block Diagram of the CS based Encoder/Decoder Architecture.

tizer.2 Finally, the Huffman encoding unit performs loss-less Huffman coding

to generate the binary encoding vector denoted by C2.

In general, it is assumed that the encoding matrix A is known at the

destination in order to perform reconstruction of x,dc from y. To overcome

this limitation, a pseudo-random number generator (PRNG) that generates

a sequence of numbers that approximates the properties of random numbers,

is usually adopted at both the transmitter and the receiver. The generated

sequence is completely determined by a relatively small set of initial val-

2Note that more efficient quantization schemes can lead to even higher CRs but the

investigation of those schemes is beyond the scope of this study.
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ues, called PRNG state, which includes a truly random seed that has to be

transmitted at the receiver side. To reduce even more the communication

requirements, a generated random matrix of dimensions M × N is stored

and used for encoding a large number of ECG segments of size N . In the

following section, we describe the operations executed on the receiver side,

to recover the original ECG signal u from the encoded vector y given the

encoding matrix A.

4. Efficient Recovery of the original ECG Signal

A simplified block diagram of the decoder architecture is also provided in

fig. 2. In the receiver, given the encoded vector y and matrix A, an efficient

CS based recovery procedure that exploit the structure of the ECG signal is

taking place. This section presents two proposed schemes that exploit this

structure in both the TD and in an UD. The first one, initially identifies and

removes the dc level of the specific segment. Then after discarding the part

(blocks) of the signal that contain less information in the TD, it estimates the

parts that are likely to correspond to the high activity regions (e.g., P,Q,R,S

and T waves). The second scheme can then be directly derived from the

first one after further taking into account the amplitude correlation among

the elements within each block (intra-block correlation). In that way, we

significantly reduce the required samples at the receiver that are essential

for achieving a relatively small reconstruction error. The identification of

the dc level and the estimation of the ECG blocks, are written as SOCPs

that can be solved by using classical interior point (IP) methods [30]. To

reduce the computational complexity of those methods, we present a scheme
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that is based on the path-wise coordinate descent approach and achieves

performance almost identical to that of the IP methods at a much lower

operational cost.

4.1. Exploitation of the Block Sparse Structure in the TD

To identify the clusters of samples that correspond to parts of the P,Q,R,S

and T waves, we need to reformulate problem (3) as follows:

min
x,dc

‖y−
R∑

i=1
A [i] x [i]− dcA1N‖2

2 +
R∑

i=1
λ‖x [i] ‖2 (6)

where the dc offset is considered an unknown parameter of the specific ECG

segment. This allows us to exploit even more the structure of each segment

itself and estimate the unknown dc level at the receiver. Given vector x, the

least squares (LS) estimation of the unknown dc offset is given by:

d̂c =
(
aT a

)−1
aT (y−Ax) (7)

where a = A1N . By substituting eq. (7) in (6) we can rewrite the aforemen-

tioned problem as:

min
x
‖yn −Anx‖2

2 +
R∑

i=1
λ‖x [i] ‖2 (8)

yn =
(
IM −

aaT

aT a

)
y,An =

(
IM −

aaT

aT a

)
A. (9)

The aforementioned group LASSO problem can be solved by using stan-

dard software packages, that employ IP methods. After evaluating the solu-

tion of the problem in (8), we are able to evaluate the original ECG segment

x having completely removed the dc offset coefficient, which in turn can be
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estimated by eq. (7). The estimation accuracy of the aforementioned proce-

dure, can be improved by using an iterative reweighed approach. This can

be intuitively justified by the following remark:

Remark 1. Using an iterative algorithm to construct the weights (wi) allows

us a better estimation of the blocks with the nonzero coefficient. Although, the

early iteration execution may lead to inaccurate signal estimates, the blocks

with largest signal coefficients are most likely to be identified as nonzero.

Once these blocks are identified, their influence is down-weighted in order

to increase sensitivity during the identification of the remaining blocks with

small but nonzero signal coefficients. Thus, the recorded measurements u

may be estimated more accurately, by executing the iterations:

x(l) := arg min
x

‖yn −Anx‖22 +
R∑

i=1
λw

(l)
i ‖x [i] ‖2 (10)

w
(l)
i :=

(
‖x(l−1) [i] ‖2 + ε

)−1
, i = 1, . . . , R (11)

Proof. The analytical justification is based on the connection of the reweighed

method with the log sum penalty, since it has been shown, that the log sum

function is much more sparsity encouraging than the l1 norm [31]. To be

more specific, it can be derived form the justification given in [31, Section

2.3] by substituting the l1 norm with the term ∑R
i=1 ‖x [i] ‖2.

The optimization per iteration of (10) is a weighted version of (8) and thus

can be efficiently solved in a similar manner as the problem defined in (8).

The iterations can be initialized with the (8) solution which corresponds to

setting all weights to unity. The iterative scheme can be terminated as soon
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as the relative error ‖x(l)−x(l−1)‖2/‖x(l)‖2 becomes smaller than some chosen

ε equal to say 10−6. The aforementioned iterative re-weighted method further

improves the accuracy of both the estimated non zero blocks and the variable

dc offset. The benefits of the proposed algorithm in terms of convergence

(e.g., required samples for achieving accurate reconstruction at the receiver),

are evaluated in section V.

4.2. Exploitation of the Block Structure of the Uncorrelated ECG

In this subsection we provide modifications that can be applied in the

problem defined by eqs. (10), (11) in order to efficiently exploit the block

sparsity of the ECG signal in an UD. It is shown that the eliminations of

any possible intra-block correlation (i.e., the amplitude correlation among the

elements within each block) can further promote block sparsity and therefore

improve the reconstruction performance of the aforementioned schemes.

Initially, let us assume that i) a Toeplitz matrix Ti ∈ <d×d captures the

correlation structure of the i-th block and ii) the correlation between elements

of different blocks is zero, i.e.,

E
[
x [i] xT [j]

]
=

 Ti if i = j

0 if i 6= j
, (12)

Ti =


r0 r1 . . . rd−1
... . . . . . . ...

rd−1 . . . r1 r0

 (13)

The value of rk, ∀k = 0, . . . , d− 1 can be calculated from the ECG samples

by using an exponentially decaying data window [40]. Alternatively, we can
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make the approximation rk = (r)k and select only a fixed value for r that

captures the correlation between adjacent samples (i.e., r = 0.94). To exploit

the block sparsity of the ECG signal in an UD we need to apply the following

transformation matrix T−1/2 to the original ECG segment:

s = T−1/2x, (14)

T−1/2 =


T−1/2

1 0d . . . 0d

. . .
. . . . . . . . .

0d . . . . . . T−1/2
R

 , (15)

where s denotes the transformed signal and 0d is a d× d matrix of all zeros.

This procedure further promotes block sparsity since as it will be shown in

the simulation section the samples of the prewhittened signal vector s can be

efficiently recovered by less encoded samples than the samples of the original

signal vector x. This remark can be intuitively justified by the fact that

group lasso algorithms become more efficient or equivalently provide better

reconstruction accuracy for a given number of encoded samples, when the

difference between the norms of non-zero blocks is minimized [26]. In fig.

3 we provide the original and decorrelated version of an ECG segment that

correspond to a 2 sec recording of a male ECG, taken from the MIT-BIH

Normal Sinus Rhythm Database [34], where it can be seen that this property

is more valid for the prewhittened signal than the original one.

To recover the original vector at the receiver by controlling the block sparsity

of the the prewhittened ECG segment s = T−1/2x we can apply the algo-

rithm presented in eqs. (10), (11) after replacing the `2 norm of x [i] with

‖s [i] ‖2. More specifically, in the l-th iteration we need to solve the following

optimization problem:
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Figure 3: Original and decorrelated ECG segment values by applying eq. (14) with a fixed

r = 0.94

s(l) := arg min
s
‖yn −AnT1/2s‖22 +

R∑
i=1

λw
(l)
i ‖s [i] ‖2 (16)

w
(l)
i :=

(
‖s [i] ‖(l−1)

2 + ε
)−1

, i = 1, . . . , R (17)

where matrix Ti may be computed according to eq. (13). To reduce the

number of iterations that need to be executed by the proposed algorithm, we

select to predefine the value of r(l)
k = (r)k and set r = 0.94. Each iteration l,

defined in eq. (16) is a group LASSO iteration and the ECG blocks samples

are computed by x(l) [i] = T1/2
i s(l) [i]. The steps of the proposed algorithm

that further exploits the intra-block correlation between samples of the same

block are summarized in Table 1.
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4.3. Block Coordinate Descent: An Efficient Group LASSO Solver

Algorithmically, the problems in eqs. (10) and (16) are tackled by IP

schemes customized to its specific form [35]. The main drawback of those

schemes is the increased complexity, which is O (M2N1.5). To reduce the

computational cost of an IP solver of (10), (16) by O
(√

N
)
, we follow the

procedure of the coordinate descent scheme presented in [21]. For the sake

of simplicity, we focus on how the algorithm can be applied in one iteration

of (10) and thus we drop index notation l in x(l) [i],w(l)
i . The core idea is to

iteratively minimize eq. (3) w.r.t. one block x [i] at a time, while keeping

the remaining ones fixed:

min
x[i]
‖yn −

∑
j 6=i

An [j] x [j]−An [i] x [i] ‖2
2 + λwi‖x [i] ‖2. (18)

Then we repeat the minimization in a round robin way, for a given number

of iterations. According to [21], the aforementioned problem admits a closed

form solution that can be written as:

x̂ [i] = Φ−1
An[i]

g [i]
‖g [i] ‖2

max (‖g [i] ‖2 − λwi, 0) (19)

where ΦAn[i] = AH
n [i] An [i] + δIdi

. The proposed block coordinate descent

algorithm (BCD) iterates by applying eqs. (7), (19) until a certain condition

is met (e.g., a given number of iteration, or a given error tolerance). Since

g [i] = AT
n [i]

(
yn −

∑
j 6=i An [j] x [j]

)
, vector g [i] can be updated as g [i] =

g [i]+An [i] x̂ [i]. After updating the value of x̂ [i] the value of g [i] is updated

as g [i] = g [i] − ΦAn[i]x̂ [i]. Note that since the matrices Φ−1
An[i] may be

computed and stored offline, the most computationally demanding operation

is the matrix-vector products Φ−1
An[i]g [i], ΦAn[i]x [i].
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5. Performance Evaluation

The focus of this study is to identify the benefits of exploiting different key

characteristics during reconstruction of the ECG signal in a WBAN receiver.

In this section, we present the simulation setup along with the results of our

experiments.

5.1. ECG Dataset and Performance metrics

For the evaluation of the proposed schemes we use both the MIT-BIH

normal sinus rhythm database and the MIT-BIH compression database [34],

where type of arrythmias are also present. The MIT-BIH Normal Sinus

Rhythm database includes 18 long-term ECG recordings of subjects referred

to the Arrhythmia Laboratory at Boston’s Beth Israel Hospital (now the Beth

Israel Deaconess Medical Center) from 5 men, aged 26 to 45, and 13 women,

aged 20 to 50. The recordings were digitized at 128 samples per second

per channel. While the MIT-BIH compression database contains 168 short

ECG recordings (20.48 seconds each) selected to pose a variety of challenges

for ECG compressors, in particular for lossy compression methods. The

recordings in this database were digitized at 250 samples per second per

channel at 12 bit resolution.

We assume that each ECG signal is divided into segments of N = 256

samples in the case of MIT-BIH normal sinus database and N = 512 samples

in the case of MIT-BIH compression database, in order to refer to similar

signal segments since the signal in the two different cases is digitized with

different sampling rates. To simulate an abrupt shift to the dc level due

to movement of the patient during recording of the ECG [20, fig. 6], we
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introduce a variable dc offset in each ECG segment, the value of which is

selected randomly in the interval [0− 100]. Each segment y is encoded by

using any of the matrices of section 3, of dimensions M × 256. To perform

a more complete and realistic study, we study both cases where either the

three units that perform inter-packet redundancy removal, quantization and

Huffman encoding are considered or not (see, fig. 2).

In the receiver side, given a specific number of received samples M , after

the Huffman decoding procedure (whenever the aforementioned units are

considered), we perform decoding of the original N samples by using the

following CS based estimators: i) the classical LASSO approach that uses a

standard SOCP solver (interior point (IP) scheme) of (6) (LASSO - IP), ii)

the Cyclic Coordinate Descent (CCD) approach that occurs from the BCD

algorithm of Section 4.3 for d = 1 iii) the iterative reweighed group LASSO

(IG LASSO-IP) of Table 1 that uses IP methods for solving iteratively the

problem defined in eq. (10) iv) the IG LASSO of Table 1 that uses the

BCD scheme (IG LASSO - BCD) for approximating the solutions of (10) v)

the prewhittened IG LASSO (PWIG LASSO - IP) of Table 1 that uses IP

methods for solving (16) vi) the PWIG LASSO that employs BCD scheme

(PWIG LASSO - BCD) for solving (16). The scaling rules for the parameter

λ in the problems (10) and (16) follow the results of [37] and [38].

Finally, we compare the CS based compression/ reconstruction schemes

with the traditional discrete wavelet based ECG compression scheme, that

consider a thresholding-based algorithm presented in [10] (estimator (vii)),

where a fixed percentage of wavelet coefficients are zeroed. This scheme, so

called as (TH DWT) has been selected as the baseline scheme since it has
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Figure 4: Block Diagram of the TH DWT Encoder/Decoder.

been shown to outperform many discrete wavelet transform (DWT) based

ECG compression algorithms such as: i) the embedded zero tree wavelet

[8], ii) the set partitioning in hierarchical trees [9]. Note that although the

authors in [10] used the bi-orthogonal bior4.4 wavelet, in this study we utilize

the orthogonal Daubechies wavelets (db 10) as the most popular wavelet

family for ECG compression [16]. The block diagram of the baseline (TH

DWT) encoder and decoder is presented in fig. 4. The DWT of the original

signal is computed and then the N − M smallest coefficients are zeroed.

To select the N − M smallest coefficients, a special unit that computes a

dynamic threshold that is strongly connected to the value of M should be

added. Each ECG coefficient is then compared to this threshold and if its

value is lower than the threshold is set to zero.
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The diagnostic quality of the compressed ECG recordings, is evaluated by

using the percentage root-mean-square difference (PRD) [36] that is defined

as: PRD = ‖u− ũ‖2 / ‖u‖2 × 100, where ũ = x̃ + d̃c1N is constructed

from the estimated value d̃c and vector x̃. In our scenarios, we assume

that a reconstructed signal is acceptable if and only if PRD < 9% [36].

The aforementioned algorithms are evaluated either in terms of the average

PRD, or in terms of the success rate, defined as the following probability

Pr{PRD < 9%}. Finally, the compression quality of the transmitted ECG,

is evaluated by using the compression ratio (CR). The CR is either calculated

at the output of the random linear coding unit in fig. 2 (or the DWT unit

in fig. 4) by CR = (N −M) /N × 100, or at the output of the Huffman

coding unit (in both figs. 2, 4) by CR = 12×N−L2
12×N

× 100. With L2 we denote

the length of the encoding vector C2 and 12×N are the total bits required

for the representation of the N initial recorded ECG samples, using a 12 bit

resolution.

5.2. Performance Results

In order to identify the more efficient CS based encoding schemes that

achieve the optimal trade off between computational requirements at the

transmitter and reconstruction error at the receiver, we conducted experi-

ments that employ the different encoding strategies presented in section III.

The CR ratio is computed at the output of the random linear encoder. De-

coding is performed by employing estimator (iii) and is evaluated by the

estimated success rate. The block length was set equal to d = 16. Fig. 5,

it can be easily shown that the use of a sparse binary matrix and sparsity

parameter equal to s = 4, results in a success rate similar to that achieved

23



0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Compression Ratio

S
u
c
c
e
s
s
 
R
a
t
e
:
 
P
r
{
P
R
D
 
<
 
9
 
%
}

 

 

LASSO (SB)
IG LASSO (SB)
PWIG LASSO (SB)
LASSO (B)
IG LASSO (B)
PWIG LASSO (B)
LASSO (G)
IG LASSO (G)
PWIG LASSO (G)

Figure 5: Evaluation of different encoding methods (e.g, Gaussian (G), Binary (B) and

Sparse Binary (SB) with s:4) in terms of PRD. For solving problems (10) and (16) we
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encoder. Database: MIT BIH normal sinus

when using a Gaussian encoding matrix, while at the same time eliminates

completely the need of multiplications at the transmitter3 and reduces the

number of additions/subtractions by 50%. Therefore for the rest of our study

we make use of a sparse binary encoding matrix with s = 4.

To efficiently select the appropriate block length d for the block CS based

algorithms (e.g., IG LASSO and PWIG LASSO), we studied the effects of

group size d in terms of the success rate. Again the CR is calculated at the

output of the linear encoder. The results are presented in fig. 6, where it

is shown that as d increases, the performance of the PWIG LASSO scheme

3Normalization with the
√
N , is implemented in Hardware, by performing a simple

shifting operation.
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(a) PRD performance for averaged over 18 ECG recordings of duration 2 hours [34]. (b)

Box plots for all database records
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0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Compression Ratio

(a)

S
u
c
c
e
s
s
 
R
a
t
e

 

 

45 50 55 60 65 70 75 80 85 90 95 100
0

0.5

1

Compression Ratio

(b)

S
u
c
c
e
s
s
 
R
a
t
e

 

 

LASSO (IP)
LASSO (BCD)
IG LASSO (IP)
IG LASSO (BCD)
PWIG LASSO (IP)
PWIG LASSO (BCD)
TH DWT

Figure 9: Probability of recovering ECG segments with PRD ¡ 9%. Encoding method:

sparse binary encoding with s:4. The CR has been evaluated at the output of (a) the

random linear encoder (b) the huffman encoder. Database: MIT BIH compression.

26



0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

R
ec

or
de

d 
V

al
ue

s 
(m

V
)

time (s)
(a)

 

 

0 0.5 1 1.5 2
−2

−1

0

1

2

3

R
ec

or
de

d 
V

al
ue

s 
(m

V
)

time (s)
(b)

 

 

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

R
ec

or
de

d 
V

al
ue

s 
(m

V
)

time (s)
(c)

 

 

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

R
ec

or
de

d 
V

al
ue

s 
(m

V
)

time (s)
(d)

 

 

Original Reconstructed

Original Reconstructed Original Reconstructed

Original
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(iv) and (vi). Encoding method: sparse binary encoding with s:4. Number of encoded Data

used for reconstruction K : 256. Database: MIT BIH normal sinus. (a) 2 sec of Original

Signal, (b) Original vs Reconstructed from 56 % less data by LASSO (IP), (c) Original

vs Reconstructed from 56 % less data by IG LASSO (IP), (d) Original vs Reconstructed

from 56 % less data by PWIG LASSO (IP).
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is affected less than that of the IG LASSO. In addition, the best results are

obtained for d = 16. In general, the choice of both the block length d and

the correlation factor r are strongly connected to the sampling frequency

that was used during the recording of the data. A rule of thumb that may

be used for selecting those two parameters (d, r), is to check if, for these

selected values the difference between the norms of non-zero blocks ‖x [i]‖2

is minimized.

In fig. 7 (a) the obtained PRD, averaged over all the data of the MIT

BIH normal sinus database, is plotted against the achieved compression ratio

(CR) at the output of the random linear encoder, for the estimators: (i),

(iii), (v) and (vii). The block length for the estimators (iii), (v) is selected

to be equal to d = 16 and the correlation parameter for the estimator (v)

is set to r = 0.945. The standard deviation of the PRD measurements is

also provided in fig. 7 (b). On each box, the central mark is the median,

the edges of the box are the 25th and 75th percentiles, and the whiskers

extend to the most extreme data points that are not considered outliers. By

inspecting the plotted curves in figs. 7 (a), (b) we conclude again that CS

algorithms that exploit the block sparsity of the ECG signal in the TD result

in successful ECG signal recovery, by reducing the CR by 20% as compared to

the achievable CR of the LASSO scheme. While the algorithms that further

exploit the intra-block correlation can achieve up to 44% CR reduction.

Similar conclusions are drawn by inspecting also figs. 8 (a) and (b), where

we plot the success rate versus the CR calculated either at the output of the

random linear encoder (fig. 8 (a)) or at the output of the Huffman encoder

(fig. 8 (b)). Note that the three additional encoding units that perform
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inter-packet redundancy removal, quantization and Huffman coding (units

with dashed lines in fig .2) at the transmitter increase the achieved CR by

almost 20%. Moreover, the application of the BCD algorithm of section

4.3 for solving the SOCP problems result in similar performance with that

achieved by the IP method.

Fig. 10 shows the original and the reconstructed segments that corre-

spond to a 2 sec of ECG recordings taken from the Normal Sinus Rhythm

Database. The number of samples used for recovery of the initial data was

equal to K = 112, (which corresponds to 56% CR). Again it is shown that

only estimators vi) result in a ”Good Quality” ECG while the PRD of the

estimators ii) and iv) is above 9%.

To consider more complex databases where type of arrythmias are also

present we conducted experiments by using data taken from the MIT BIH

compression database. In figs. 9 (a) and (b) we provide the results obtained

by using all the data from the database, at the output of random linear

encoder and Huffman encoder, respectively. It is clearly shown that the

proposed scheme is even more robust in more complex ECG data bases as

compared to the IG LASSO or LASSO approaches. In addition, as in the

sinus rhythm case the application of the BCD as compared to the IP methods

results in a similar performance at a lower reconstruction complexity. Finally,

it should be noted that the proposed scheme especially in the case that the CR

is computed at the output of the Huffman encoder, perform slightly better

than the TH DWT method, but at a much lower compression cost, since the

compression is achieved by simply generating random linear combinations of

the recorded data.
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Fig. 11 gives the speed comparison of the 6 estimators (i) - (vi) that are

executed on the receiver. The experiments were carried out on a computer

with dual-core 2.9GHz CPU, 8 GB RAM and Windows 7 OS. Note that the

execution time of PWIG LASSO is lower than that of IG LASSO (either

when executing IP or when executing the BCD method), due to the fact

that problem (16) requires less iterations to be executed (either IP or BCD

iterations) as compared to that defined in eq. (10). The IG LASSO and

PWIG LASSO schemes converge in only K = 2 − 3 iterations either when

employing IP methods or the BCD algorithm of Section 4.3. The total num-

ber of iterations executed by the BCD in the PWIG LASSO and IG LASSO

schemes was between 150− 200, while their execution time was 15-30 times

lower than that of a standard IP method.

5.3. Energy Consumption Gains

In these subsection our goal is to provide some useful insights regarding

the energy saving that can be achieved by the evaluated compression/ recon-

struction schemes. In fig. 12 (a), we provide the power breakdown of existing

low power ECG sensors according to [13], where it is shown that digital sig-

nal processing (DSP) and wireless data transmission dominates the system

power consumption.

Based on [13], we assume that the transmit power of an ultra low power

wireless ECG sensor is equal to 1.4 mW . Furthermore, fig. 8 (b), show that

the PWIG LASSO method requires 75% less bytes, as compared to the origi-

nal N×12/8 bytes, for ensuring an accurate reconstruction at the destination,

while the DWT, the IG LASSO and the LASSO require 73%, 50%and 40%

less bytes, respectively. To evaluate the energy consumed in the radio part
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Power Break Down of Wireless ECG Sensors
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Figure 12: (a) The power dissipation of the ECG wireless sensor nodes is dominated by

DSP and wireless data transmission.(b) Radio Energy Consumption at the biosensor.

we select parameters that are in line with the IEEE 802.15.6 [41] standard

specification4, we assume that in each one of the aforementioned cases, the

data required at the final destination, form a packet of length 108, 120, 204

and 248 bytes respectively, where the first 12 bytes correspond to the MAC

and Physical Layer Preamble headers and the rest to the payload, consisting

of the required encoded samples (Note that the payload data according to

[41] vary between 0 − 255 bytes). Assuming a data rate equal to 128 kbps,

that is one of the supporting data rates in the 2360-2400 MHz band, the

required times for transmitting each packet for each one of the evaluated

methods is equal to 6.7 ms, 7.5 ms, 12.7 ms and 15.5 ms. Since we have

assumed that processing is performed in blocks of samples that correspond

to a signal observation of 1 s duration, for the rest time that the radio do

not transmit, it is in a sleep mode consuming Ps = 0.01mW . In fig. 2 (b)

4IEEE 802.15.6 is a standard for short-range, wireless communications in the vicinity

of, or inside, a human body
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we present the energy consumption in the radio part of an ECG wireless sen-

sor, for each one of the evaluated compression/reconstruction schemes. To

evaluate the energy ER, consumed in the radio part, we used the following

equation ER = PtTp +Ps(1−Tp) where Pt, Ps denote the transmit and sleep

power and Tp is the time required for the transmission of a packet, consisting

of the encoded ECG segment.

By inspecting figs. 12 (a), (b) it can be shown that the PWIG LASSO

scheme, as compared to the IG LASSO and LASSO schemes, decreases the

biosensor total energy consumption by 22% and 30% respectively. Recall

that in all schemes the energy consumed in the DSP and AFE parts are

the same, since the compression is performed in the same way. It should be

also mentioned that although the radio energy consumption of the PWIG

LASSO method is only 5% lower compared to the DWT method, the total

energy gains are much higher, due to the fact that PWIG LASSO requires a

simpler compression method to be executed at the transmitter. To be more

specific, the authors in [R.16] showed that the LASSO method consume 30

times less energy in the DSP part of a Shimmer node, as compared to the

DWT method. Based on that remark, the total energy savings of PWIG

LASSO as compared to the DWT method due to the energy savings in the

DSP part could be of the order of 26%, since the DSP part of a low power

ECG sensor, consumes the 25% of the total energy consumption (fig. 12 (a)).

In a similar way, we can evaluate the energy consumed in the radio part

of the receiver after taking into account that the receive power of an ultra low

power wireless ECG sensor is equal to 1.6 mW . We expect that the PWIG

LASSO scheme, as compared to the IG LASSO and LASSO schemes, will
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decrease the receiver total energy consumption by factors larger than 22%

and 30% respectively. This remark, is explained by the fact that apart from

the gains offered by the achieved CR in the radio part of the receiver, the

exploitation of block sparsity offers significant gains at the DSP part of the

receiver, according to the results presented in fig. 11.

6. Concluding Remarks

ECG telemonitoring via WBANs introduces several challenges, that mo-

tivate the design of ECG compression schemes, with reduced compression

and reconstruction computational requirements at both the transmitter and

receiver. The application of the theory of Compressed Sensing (CS) to the

problem at hand, can achieve those requirements. We showed via extensive

simulations that the exploitation of the block structure of ECG signal in

the TD, and more importantly in a specific UD can lead to significant sav-

ings in the amount of data that should be transmitted from the biosensor

in order to achieve an accurate signal reconstruction at any receiver in the

WBAN (i.e., smart phone or remote terminal). The proposed algorithms

for ECG signal recovery at the destination, achieve improved reconstruction

capabilities with significant gains in both compression ratio and computa-

tional cost. Although, the focus was the wireless ECG telemonitoring, the

proposed algorithms are applicable to other telemedicine applications such

as telemonitoring of electroencephalograph [39], and electromyography [17]

where the signals have similar block sparse structure either in the TD or in

other transform domains.
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Table 1: Summary of the Iterative Reweighed Group LASSO (IG LASSO) and

Prewhitened Iterative Reweighed Group LASSO (PWIG LASSO) Algorithms
(PW)IG LASSO:

Inputs: Encoding Matrix: A

Received packets: y, Block length d

Output: Estimated ECG Data x, dc coefficient

1. Initialize yn, An, w(0)
i

yn =
(
IM − aaT

aT a

)
y,An =

(
IM − aaT

aT a

)
A, a = A1N

Solve x(0) := arg minx ‖yn −Anx‖2
2 +

∑R
i=1 λ‖x [i] ‖2

by i) interior point methods (IP) or ii) Algorithm BCD of Section 4.3.

w
(0)
i :=

(
‖x0 [i] ‖2 + ε

)−1
, i = 1, . . . , R

2. Evaluate Ti, ∀i from eqs. (13)∗

3. Initialize s(0) and compute matrix Ψ

s [i] = T−1/2
i x [i], s =

[
sT [1] sT [2] . . . sT [R]

]
Ψ = Andiag

{
T1/2

1 , . . . ,T1/2
R

}
4. repeat for each iteration l = 1, . . . ,K

a. Solve problem (16) by either applying

i) interior point methods (IP) or ii) Algorithm BCD of Section 4.3.

b. Evaluate x(l) [i] = T1/2
i s(l) [i]∀ i

c. Update weights w(l+1)
i according to eq. (17)

d. Update Ti, ∀i from eqs. (13)∗∗

e. Update Ψ = Andiag
{

T1/2
1 , . . . ,T1/2

R

}
∗∗

end repeat

5. Estimate dc offset coefficient

d̂c =
(
aT a

)−1 aT
(
y−Ax(K))

∗By setting Ti = Id, ∀i = 1, . . . , R the PWIG LASSO scheme

reduces to the IG LASSO scheme that exploits block sparsity in the TD.
∗∗Steps d,e can be eliminated by using a fixed r at each iteration.
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