Journal article Open Access

Pattern Recognition using Support Vector Machines as a Solution for Non-Technical Losses in Electricity Distribution Industry

Azubuike N. Aniedu; Hyacinth C. Inyiama; Augustine C. O. Azubogu; Sandra C. Nwokoye


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Clustering, classification and association rules, Correlation and regression analysis, Machine learning</subfield>
  </datafield>
  <controlfield tag="005">20210915134823.0</controlfield>
  <controlfield tag="001">5508750</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka, Nigeria.</subfield>
    <subfield code="a">Hyacinth C. Inyiama</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka, Nigeria.</subfield>
    <subfield code="a">Augustine C. O. Azubogu</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka, Nigeria.</subfield>
    <subfield code="a">Sandra C. Nwokoye</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering and Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">662907</subfield>
    <subfield code="z">md5:bf4f7b840927e362eb739d817fdd8492</subfield>
    <subfield code="u">https://zenodo.org/record/5508750/files/B1280037221.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-03-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5508750</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1-8</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">International Journal of Innovative Science and Modern Engineering (IJISME)</subfield>
    <subfield code="v">7</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka, Nigeria.</subfield>
    <subfield code="a">Azubuike N. Aniedu</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Pattern Recognition using Support Vector Machines as a Solution for Non-Technical Losses in Electricity Distribution Industry</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2319-6386</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijisme.B1280037221</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Contending with Non-Technical Losses (NTL) is a major problem for electricity utility companies. Hence providing a lasting solution to this menace motivates this and many more research work in the electricity sector in recent times. Non-technical losses are classed under losses incurred by the electricity utility companies in terms of energy used but not billed due to activities of users or malfunction of metering equipment. This paper therefore is aimed at proffering a solution to this problem by first detecting such loopholes via the analysis of consumers&amp;rsquo; consumption pattern leveraging Machine learning (ML) techniques. Support vector machine classifier was chosen and used for classifying the customers&amp;rsquo; energy consumption data, training the system and also for performing predictive analysis for the given dataset after a careful survey of a number of machine learning classifiers. A classification accuracy (and subsequently, class prediction) of 79.46% % was achieved using this technique. It has been shown, through this research work, that fraud detection in Electricity monitoring, and hence a solution to non-technical losses can be achieved using the right combinations of Machine Learning techniques in conjunction with AMI technology.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2319-6386</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijisme.B1280.037221</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
9
7
views
downloads
Views 9
Downloads 7
Data volume 4.6 MB
Unique views 8
Unique downloads 7

Share

Cite as