Working paper Open Access

An Integrated Data Framework for Policy Guidance in Times of Dynamic Economic Shocks

Dörr; Kinne; Lenz; Licht; Winker


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">COVID-19</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">impact assessment</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">corporate sector</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">corporate website</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">web mining</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">NLP</subfield>
  </datafield>
  <controlfield tag="005">20210914134832.0</controlfield>
  <controlfield tag="001">5506512</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="a">Data for Policy 2021</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Jan</subfield>
    <subfield code="a">Kinne</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">David</subfield>
    <subfield code="a">Lenz</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Georg</subfield>
    <subfield code="a">Licht</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Peter</subfield>
    <subfield code="a">Winker</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">576464</subfield>
    <subfield code="z">md5:3a1b94cacc07cef72c609a89de0d4fa0</subfield>
    <subfield code="u">https://zenodo.org/record/5506512/files/dp21062.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-06-17</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-dfp17</subfield>
    <subfield code="o">oai:zenodo.org:5506512</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Julian</subfield>
    <subfield code="a">Dörr</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">An Integrated Data Framework for Policy Guidance in Times of Dynamic Economic Shocks</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-dfp17</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Usually, official and survey-based statistics guide policy makers in their choice of response&amp;nbsp;instruments to economic crises. However, in an early phase, after a sudden and unforeseen shock has caused incalculable and fast-changing dynamics, data from traditional statistics are only available with non-negligible time delays. This leaves policy makers uncertain about how to most effectively manage their economic countermeasures to support businesses, especially when they need to respond quickly, as in the COVID-19 pandemic. Given this information deficit, we propose a framework that guides policy makers throughout all stages&lt;br&gt;
of an unforeseen economic shock by providing timely and reliable data as a basis to make informed decisions. We do so by combining early stage &amp;lsquo;ad hoc&amp;rsquo; web analyses, &amp;lsquo;follow-up&amp;rsquo; business surveys, and &amp;lsquo;retrospective&amp;rsquo; analyses of firm outcomes. A particular focus of our framework is on assessing the early effects of the pandemic, using highly dynamic and largescale data from corporate websites. Most notably, we show that textual references to the coronavirus pandemic published on a large sample of company websites and state-of-the-art text analysis methods allow to capture the heterogeneity of the crisis&amp;rsquo; effects at a very early&lt;br&gt;
stage and entail a leading indication on later movements in firm credit ratings.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5506511</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5506512</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">workingpaper</subfield>
  </datafield>
</record>
90
61
views
downloads
All versions This version
Views 9090
Downloads 6161
Data volume 35.2 MB35.2 MB
Unique views 7979
Unique downloads 5454

Share

Cite as