Working paper Open Access

An Integrated Data Framework for Policy Guidance in Times of Dynamic Economic Shocks

Dörr; Kinne; Lenz; Licht; Winker


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.5506512</identifier>
  <creators>
    <creator>
      <creatorName>Dörr</creatorName>
      <affiliation>Julian</affiliation>
    </creator>
    <creator>
      <creatorName>Kinne</creatorName>
      <affiliation>Jan</affiliation>
    </creator>
    <creator>
      <creatorName>Lenz</creatorName>
      <affiliation>David</affiliation>
    </creator>
    <creator>
      <creatorName>Licht</creatorName>
      <affiliation>Georg</affiliation>
    </creator>
    <creator>
      <creatorName>Winker</creatorName>
      <affiliation>Peter</affiliation>
    </creator>
  </creators>
  <titles>
    <title>An Integrated Data Framework for Policy Guidance in Times of Dynamic Economic Shocks</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>COVID-19</subject>
    <subject>impact assessment</subject>
    <subject>corporate sector</subject>
    <subject>corporate website</subject>
    <subject>web mining</subject>
    <subject>NLP</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-06-17</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Working paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5506512</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5506511</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/dfp17</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Usually, official and survey-based statistics guide policy makers in their choice of response&amp;nbsp;instruments to economic crises. However, in an early phase, after a sudden and unforeseen shock has caused incalculable and fast-changing dynamics, data from traditional statistics are only available with non-negligible time delays. This leaves policy makers uncertain about how to most effectively manage their economic countermeasures to support businesses, especially when they need to respond quickly, as in the COVID-19 pandemic. Given this information deficit, we propose a framework that guides policy makers throughout all stages&lt;br&gt;
of an unforeseen economic shock by providing timely and reliable data as a basis to make informed decisions. We do so by combining early stage &amp;lsquo;ad hoc&amp;rsquo; web analyses, &amp;lsquo;follow-up&amp;rsquo; business surveys, and &amp;lsquo;retrospective&amp;rsquo; analyses of firm outcomes. A particular focus of our framework is on assessing the early effects of the pandemic, using highly dynamic and largescale data from corporate websites. Most notably, we show that textual references to the coronavirus pandemic published on a large sample of company websites and state-of-the-art text analysis methods allow to capture the heterogeneity of the crisis&amp;rsquo; effects at a very early&lt;br&gt;
stage and entail a leading indication on later movements in firm credit ratings.&lt;/p&gt;</description>
  </descriptions>
</resource>
90
61
views
downloads
All versions This version
Views 9090
Downloads 6161
Data volume 35.2 MB35.2 MB
Unique views 7979
Unique downloads 5454

Share

Cite as