Journal article Open Access

Semiconductor Bearing Fault Recognition

Nikhita Mishra; Ipshitta Chaturvedi; Janhvi Mehta


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">semiconductor manufacturing, defective bearing, machine learning, deep learning.</subfield>
  </datafield>
  <controlfield tag="005">20210913134824.0</controlfield>
  <controlfield tag="001">5502331</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of Computer Science and Engineering, Vellore Institute of Technology, Vellore</subfield>
    <subfield code="a">Ipshitta Chaturvedi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of Computer Science and Engineering, Vellore Institute of Technology, Vellore</subfield>
    <subfield code="a">Janhvi Mehta</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering and Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">665467</subfield>
    <subfield code="z">md5:5adff42b43c487d89def1f87e3c79ebd</subfield>
    <subfield code="u">https://zenodo.org/record/5502331/files/F30900810621.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-10-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5502331</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">21-26</subfield>
    <subfield code="n">1</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">11</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">School of Computer Science and Engineering, Vellore Institute of Technology, Vellore</subfield>
    <subfield code="a">Nikhita Mishra</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Semiconductor Bearing Fault Recognition</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijeat.F30900810621</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Semiconductor manufacturing is consid-ered to be one of the most technologically complicated manufacturing processes. Bearing, being a critical part of the rotating machinery used in the process, plays an essential role as it supports the mechanical rotating body and decreases the friction coefficient. However, extensive use makes this element a target of health degradation, which indirectly causes machine failure. A defective bearing causes approximately 50% of failures in electrical machines. Hence, there arises a dire need for effective fault detection and diagnosis methods to recog-nise fault patterns and help take preventive measures. This paper carries out a comprehensive comparative study of the pre-existing machine learning and deep learning techniques used for diagnosing bearing faults and further devises a novel framework for bearing fault diagnosis based on the results. Unlike the conventional Fault Detection Classifiers (FDC) that operate in the original data space, this algorithm explores the scope for feature extraction and transferability empowered by the deep learning models used.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.F3090.10110121</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
37
23
views
downloads
Views 37
Downloads 23
Data volume 15.3 MB
Unique views 37
Unique downloads 22

Share

Cite as