Journal article Open Access

Semiconductor Bearing Fault Recognition

Nikhita Mishra; Ipshitta Chaturvedi; Janhvi Mehta


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5502331</identifier>
  <creators>
    <creator>
      <creatorName>Nikhita Mishra</creatorName>
      <affiliation>School of Computer Science and Engineering, Vellore Institute of Technology, Vellore</affiliation>
    </creator>
    <creator>
      <creatorName>Ipshitta Chaturvedi</creatorName>
      <affiliation>School of Computer Science and Engineering, Vellore Institute of Technology, Vellore</affiliation>
    </creator>
    <creator>
      <creatorName>Janhvi Mehta</creatorName>
      <affiliation>School of Computer Science and Engineering, Vellore Institute of Technology, Vellore</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Semiconductor Bearing Fault Recognition</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>semiconductor manufacturing, defective bearing, machine learning, deep learning.</subject>
    <subject subjectScheme="issn">2249-8958</subject>
    <subject subjectScheme="handle">100.1/ijeat.F30900810621</subject>
  </subjects>
  <contributors>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering and Sciences Publication(BEIESP)</contributorName>
      <affiliation>Publisher</affiliation>
    </contributor>
  </contributors>
  <dates>
    <date dateType="Issued">2021-10-30</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5502331</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2249-8958</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijeat.F3090.10110121</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Semiconductor manufacturing is consid-ered to be one of the most technologically complicated manufacturing processes. Bearing, being a critical part of the rotating machinery used in the process, plays an essential role as it supports the mechanical rotating body and decreases the friction coefficient. However, extensive use makes this element a target of health degradation, which indirectly causes machine failure. A defective bearing causes approximately 50% of failures in electrical machines. Hence, there arises a dire need for effective fault detection and diagnosis methods to recog-nise fault patterns and help take preventive measures. This paper carries out a comprehensive comparative study of the pre-existing machine learning and deep learning techniques used for diagnosing bearing faults and further devises a novel framework for bearing fault diagnosis based on the results. Unlike the conventional Fault Detection Classifiers (FDC) that operate in the original data space, this algorithm explores the scope for feature extraction and transferability empowered by the deep learning models used.&lt;/p&gt;</description>
  </descriptions>
</resource>
37
23
views
downloads
Views 37
Downloads 23
Data volume 15.3 MB
Unique views 37
Unique downloads 22

Share

Cite as