Conference paper Open Access
Limsopatham, Nut; Collier, Nigel
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.55013</identifier> <creators> <creator> <creatorName>Limsopatham, Nut</creatorName> <givenName>Nut</givenName> <familyName>Limsopatham</familyName> <affiliation>University of Cambridge</affiliation> </creator> <creator> <creatorName>Collier, Nigel</creatorName> <givenName>Nigel</givenName> <familyName>Collier</familyName> <affiliation>University of Cambridge</affiliation> </creator> </creators> <titles> <title>Normalising Medical Concepts in Social Media Texts by Learning Semantic Representation</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2016</publicationYear> <dates> <date dateType="Issued">2016-06-06</date> </dates> <resourceType resourceTypeGeneral="Text">Conference paper</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/55013</alternateIdentifier> </alternateIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The TwADR-L and AskAPatient datasets for reproducing experiments in the paper entitled &quot;Normalising Medical Concepts in Social Media Texts by Learning Semantic Representation&quot; to be published at ACL 2016: the 54th Annual Meeting of the Association for Computational Linguistics &mdash; August 7&ndash;12, 2016 &mdash; Berlin, Germany.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 1,560 | 1,566 |
Downloads | 199 | 199 |
Data volume | 351.1 MB | 351.1 MB |
Unique views | 1,094 | 1,096 |
Unique downloads | 193 | 193 |