Journal article Open Access

A Methodology for Efficient Sketch Based Image Retrievals Based on Correlation Based Matching and Generalized Gamma Mixture Model (GGMM)

K M Vara Prasad; Ande Prasad


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Correlation Based Matching, Statistical Models, Criminal Investigations, Sketch-Based Images, Experimental Evaluation, Content Based Retrievals.</subfield>
  </datafield>
  <controlfield tag="005">20210908134847.0</controlfield>
  <controlfield tag="001">5494550</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Professor, Department of Computer Science, Vikrama Simhapuri University, Nellore (Andhra Pradesh), India.</subfield>
    <subfield code="a">Ande Prasad</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering &amp; Sciences Publication (BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">348708</subfield>
    <subfield code="z">md5:e98d1d767e218666d778197dbfb18229</subfield>
    <subfield code="u">https://zenodo.org/record/5494550/files/H2461036820.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-03-25</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5494550</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1-5</subfield>
    <subfield code="n">8</subfield>
    <subfield code="p">International Journal of Emerging Science and Engineering (IJESE)</subfield>
    <subfield code="v">6</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Research Scholar, Department of Computer Science, Vikrama Simhapuri University, Nellore (Andhra Pradesh), India.</subfield>
    <subfield code="a">K M Vara Prasad</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Methodology for Efficient Sketch Based Image Retrievals Based on Correlation Based Matching and Generalized Gamma Mixture Model (GGMM)</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2319-6378</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)H2461036820/2020©BEIESP</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The huge developments in touch screen devices and used in Computer vision developed the methodologies for recovering the images based on content. However in certain situations narration is the best suitable way to express and hence in the views of narration sketch based images are thus developed and utilized. These sketch based images are most useful in identifying face in criminal investigations. This paper provides a methodology for retrieving such sketch based images using the correlation based matching and generalized gamma mixture models. Performance is measured using precision and recall.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2319-6378</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijese.H2461.036820</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
5
4
views
downloads
Views 5
Downloads 4
Data volume 1.4 MB
Unique views 5
Unique downloads 4

Share

Cite as