
Screening-based MTS

Multiple-timestep ab initio molecular dynamics based on two-electron integral

screening

Shervin Fatehi1 and Ryan P. Steele1, a)

Department of Chemistry and Henry Eyring Center for Theoretical Chemistry,

University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850,

USA

A multiple-timestep ab initio molecular dynamics scheme based on varying the two-

electron integral screening method used in Hartree–Fock or density functional theory

calculations is presented. Although screening is motivated by numerical considera-

tions, it is also related to separations in the length- and timescales characterizing

forces in a molecular system: Loose thresholds are sufficient to describe fast mo-

tions over short distances, while tight thresholds may be employed for larger length

scales and longer times, leading to a practical acceleration of ab initio molecular

dynamics simulations. Standard screening approaches can lead, however, to signifi-

cant discontinuities in (and inconsistencies between) the energy and gradient when

the screening threshold is loose, making them inappropriate for use in dynamics. To

remedy this problem, a consistent window-screening method that smoothes these dis-

continuities is devised. Further algorithmic improvements reuse electronic-structure

information within the dynamics step and enhance efficiency relative to a näıve

multiple-timestepping protocol. The resulting scheme is shown to realize meaningful

reductions in the cost of Hartree–Fock and B3LYP simulations of a moderately large

system, the protonated-sarcosine/glycine dipeptide embedded in a 19-water cluster.
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I. INTRODUCTION

Ab initio molecular dynamics (AIMD) techniques combine the locality and efficiency of

classical nuclear dynamics with on-the-fly generation of forces from electronic structure the-

ory to generate real-time chemical information at a microscopic level.1–4 Electronic structure

theory can provide significantly more accurate forces than classical force fields, particularly

for systems exhibiting strong polarization, charge transfer, and bond rearrangements. The

cost of electronic-structure forces is many orders of magnitude larger than that of force

fields, however, effectively prohibiting the use of AIMD for many systems and timescales of

chemical interest.

Classical, non-polarizable force fields partition the potential energy of chemical systems

into several bonded and non-bonded contributions,1

E = Ebonds + Eangles + Edihedrals︸ ︷︷ ︸
Ebonded

+Evan der Waals + Eelectrostatics︸ ︷︷ ︸
Enon-bonded

, (1)

each of which is represented by analytic functions which can be differentiated to obtain forces.

The bonded terms are typically parameterized to favor the equilibrium bond lengths, bond

angles, and dihedral angles of the discrete chemical species in the system; the non-bonded

terms primarily describe intermolecular interactions. While the Lennard-Jones potentials

typically used to represent the van der Waals dispersion forces are basically short-range

(decaying as r−6), the (1/r) Coulomb potential mediating the electrostatics is inherently

long-range. As a result, evaluation of the electrostatic energy and forces is the most time-

consuming part of force-field treatments of large systems.5

This problem is exacerbated in MD simulations by the fact that the fastest motions in

the system — typically vibrations of hydrogen-containing bonds — set the maximum viable

timestep; even though long-range electrostatic forces may change negligibly on the timescale

of a bond vibration, a standard MD integrator would require that they be calculated at

each timestep. A common strategy for eliminating this redundancy is to treat long-range

electrostatics as an infrequent correction to a reference system containing the bonded, van

der Waals, and short-range electrostatic interactions, such that the reference and correction

are effectively integrated with different (“multiple”) timesteps.5–8

Multiple-timestep (MTS) molecular dynamics can be derived most naturally from a Liou-

villian formulation of classical mechanics,9 although the MTS idea predates10–15 the resulting
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reversible reference-system propagator algorithm (r-RESPA). The basic algorithm is pre-

sented in ref 9 and will not be reviewed here. For the purposes of this work, multiple-timestep

MD constitutes a sequence of n velocity-Verlet “inner timesteps” using a computationally

expedient force, followed by a momentum correction (or “outer timestep”) associated with

the remaining contributions to the total force.

In AIMD, analytic potential and force functions are replaced by electronic-structure en-

ergies and gradients, which are determined from the full-system Hamiltonian H(R) and

geometry R via a nonlinear self-consistent-field (SCF) procedure. This black-box character

comes at the cost of separability; in particular, an explicit partitioning of forces is mani-

festly impossible. It would seem, then, that ab initio molecular dynamics simulations must

be limited in scope to short timescales.

Multiple-timestep AIMD schemes can be formulated, nevertheless. The full-system force

from a low-level theory Flow is taken as a reference and subsequently corrected with the

force difference from a higher-level theory, ∆F ≡ Fhigh − Flow. Over the last decade, MTS

has been applied to AIMD in this way. For example, an affordable density functional theory

(such as PBE) can be corrected with forces from higher-level DFT (such as B3LYP).16,17

These schemes were treated as ad hoc approaches for accelerating dynamics calculations,

and general physical justifications for their use remains an open question. More formally

justified MTS methods have also been used to propagate electronic information in the context

of extended-Lagrangian MD approaches.18,19

Recently, an ab initio multiple-timestep scheme was presented20 in which Hartree–Fock

theory (HF) was corrected with a correlated wavefunction method, second-order Møller–

Plesset perturbation theory (MP2).21 In the limit of large system size N , HF/MP2 multiple-

timestepping realizes a reduction in the computational cost of an MD simulation which is

linear in the number of inner timesteps, as expected from the cost dominance of MP2 over

HF [O(N5) versus O(N4) formal scaling].22,23 Moreover, this scheme has a solid physical

foundation — the observed separation between the timescales of variation in the HF forces

and in the additional correlation forces obtained from MP2. To the extent that similar

separations can be identified between HF, MP2, and more powerful correlated methods

(such as coupled-cluster theory), highly accurate dynamics simulations of small systems

may soon become feasible.

Of course, correlated wavefunction theories are cost-prohibitive for studying truly large
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systems, and even Hartree–Fock or DFT may be unappealingly costly. If these latter meth-

ods were considered monolithic, then the usefulness of multiple-timestepping as a AIMD

acceleration tool would already be exhausted. These basic methods can, however, vary

widely in accuracy and computational cost, depending on a range of choices made in ad-

vance of a calculation. Some of these choices reflect purely numerical considerations, such

as the convergence criterion for the self-consistent-field procedure; others have physical con-

tent, such as the basis set or density functional employed. The extent to which variations

in each of these (generalized) parameters would support a multiple-timestepping scheme is

a subject that remains largely unexplored. The present work is focused on the effect of

changes in two-electron integral screening, keeping other parameters fixed.

A. Motivation for screening-based multiple-timestepping

Screening-based multiple-timestepping is motivated by the connection between the mag-

nitude of each two-electron integral and the length scale of the interactions it describes.

Consider the integral

(µν|λσ) =

∫
dr1

∫
dr2 φ

∗
µ(r1; RA)φν(r1; RB)

1

r12

φ∗
λ(r2; RC)φσ(r2; RD), (2)

where φµ(r1; RA) is a contracted-Gaussian atomic orbital centered on the nucleus at posi-

tion RA and occupied by an electron with coordinate r1. Orbital pair µν forms a charge

distribution centered at Rµν which decays exponentially as Sµν ∼ exp (−αµνR2
AB), with

RAB ≡ |RA −RB| the internuclear distance and αµν a composite of primitive-Gaussian

widths. The asymptotic behavior of the integral is therefore given by24

(µν|λσ) ∼ SµνSλσ
Rµνλσ

, (3)

where Rµνλσ ≡ |Rµν −Rλσ| is the distance between the charge centers.

If either charge distribution is highly attenuated — its constituent orbitals are centered

on distant nuclei — or if the charge distributions themselves are well-separated, the integral

will be small. It may be possible to discard such an integral altogether without measurably

affecting the accuracy of the calculation.“Screening” is the umbrella term for a constellation

of techniques which exclude integrals on this basis, thereby reducing the formal O(N4)

cost of constructing these four-index quantities to a more modest quadratic (or even linear)

scaling.24
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Eq 3 clearly states that the size of a two-electron integral is inversely proportional to

the length scale of the electronic interaction it describes. Thus, the screening threshold is

equivalent, in some sense, to a range-separation parameter for the interelectronic repulsion.

Given that interactions over small length scales tend to be associated with motions of high

frequency, the forces associated with integrals of disparate size should also vary on dis-

parate timescales, which is a scenario tailor-made for multiple-timestepping. This intuition

is borne out in the analysis that follows, and it is the foundation of a practical approach for

accelerating AIMD simulations.

To the extent that the intuitive correspondence between the screening threshold and a

range-separation parameter is valid, the multiple-timestep approach developed here is similar

in spirit to the MTS-CASE method of Luehr and coworkers.25 MTS-CASE is based on an

explicit partitioning of the bare Coulomb potential felt by both electrons and nuclei,

1

r
=

erf(ωr)

r
+

erfc(ωr)

r
, (4)

where erf(ωr) is the (long-range) error function; erfc(ωr) is the (short-range) complementary

error function; and the parameter ω sets the length scale of the range separation. (The name

“MTS-CASE” stems from the fact that neglecting the long-range Coulomb tail in the inner

timesteps is equivalent to adopting the Coulomb-attenuated Schrödinger equation, or CASE

model.26) Luehr et al. noted25 that MTS-CASE inner timesteps can be made linearly scaling,

owing to efficient screening of the CASE two-electron integrals,27 although this connection

has not yet been pursued. Evidence of a rigorous timescale separation between CASE and

standard Hartree–Fock forces also remains to be presented, but such a separation is to

be expected. In the analysis that follows, the range separation implicit in the screening

threshold is explicitly shown to be associated with a separation in timescale, as required

to justify MTS. Direct comparisons between our method and MTS-CASE are reserved for

future work.

B. Outline of the present work

This manuscript is organized as follows. In Section II, a detailed description of the de-

velopment of the screening-based multiple-timestep scheme is provided, including a review

of the simplest complete sequence of screening methods used in computing ab initio ener-

gies and gradients (II A); a demonstration that these classic techniques break down when
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the screening threshold is significantly loosened (II B); and a remedy for these pathologies

(II C). The screening-based MTS protocol is formulated in Section II D, and the method is

shown to be phenomenologically justified by a timescale separation in the forces. Instead

of proceeding immediately to numerical tests, Section II E highlights the fact that classical

and ab initio multiple-timestep schemes are governed by different cost inequalities, such that

computational savings are harder to achieve in the ab initio setting. Several approaches to

subverting this limitation are described. In Section III, timings are presented for a model

biological system, the protonated-sarcosine/glycine dipeptide embedded in a 19-water clus-

ter. Section IV concludes with a summary of findings and a discussion of possible future

directions.

II. METHODS DEVELOPMENT

A screening-based multiple-timestep AIMD scheme is developed in this work. Briefly

stated, the method consists of several standard MD steps at loose screening thresholds,

followed by a correction to the momenta — in the usual r-RESPA fashion — from the

difference in forces obtained using loose and tight thresholds. Although this MTS approach

is conceptually straightforward, it entails several technical hurdles, which require both an

explication of integral screening and an analysis of the pathologies that can arise in standard

screening techniques. These pathologies can directly impact the accuracy of single-timestep

AIMD as well, and, to the authors’ knowledge, have not been analyzed in the literature.

A. Review of basic screening methods

This section summarizes the simplest complete sequence of screening methods that might

be employed in computing energies and gradients using an atomic-orbital-based quantum-

chemistry software package.28–31

1. Before SCF: Shell-pair economization

Because screening is based on the asymptotic behavior of the two-electron integrals, it

requires a modest computational overhead relative to the cost of computing the integrals

outright. In the limit of large system size, however, the number of integrals to be screened
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continues to grow quartically, even as the number of integrals retained grows quadratically.

As a result, the screening overhead can eventually dominate the cost of the calculation. One

means of reducing the overhead is to eliminate integrals from consideration by some crude

(but efficient) pre-screening method. Pre-screening is not the focus of the methodological

developments of this work, but its relationship to more rigorous screening merits brief review.

In contracted-Gaussian basis sets, each atomic orbital is composed of a sum of primitive

Gaussians. For example, an s-type orbital has the form

φµ(r1; RA) =
∑
m

cµmgm(r1; RA), (5)

where cµm is the contraction coefficient of the normalized primitive gm(r1; RA) with width

αm. Consequently, the charge distribution associated with an s-type orbital pair µν is a

linear combination of primitive Gaussian “shell pairs” mn,

φ∗
µ(r1; RA)φν(r1; RB) =

∑
mn

c∗µmcνng
∗
m(r1; RA)gn(r1; RB). (6)

The pre-screening approach known as “shell-pair economization” consists of computing

the orbital pairs µν before the SCF procedure begins, discarding shell pairs if their overlap

is smaller than a threshold value εshell.
31 The overlap is given analytically by

smn =

∫
dr1 gm(r1; RA)gn(r1; RB) (7)

=

(
π

αmn

) 3
2

NmNne−
αmαn
αmn

R2
AB , (8)

where αmn ≡ αm + αn and N denotes a normalization constant. Shell-pair economization

may therefore be written as

φµ(r1; RA)φν(r1; RB) ≈
∑
mn

cµmcνnΘ (smn − εshell) gm(r1; RA)gn(r1; RB), (9)

with Θ(x) the (right-continuous) Heaviside step function,

Θ(x) =

0, x < 0

1, x ≥ 0.
(10)

If the internuclear distance RAB or threshold εshell is large, all of the shell pairs constituting

µν might be discarded by eq 9. All of the integrals involving µν would, in turn, be excluded

from the calculation.
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2. During SCF: Integral screening

After shell-pair economization, the energy is determined via the SCF procedure. Whether

the system is treated with Hartree–Fock or Kohn–Sham DFT, each SCF cycle involves the

construction of a contribution to the energy from the two-electron integrals,

E2e− =
1

2
Tr P · F2e− =

1

2
Tr P · (J− cXK) =

1

2
Tr P ·Π ·P. (11)

Here, P is the density matrix; F2e− is the two-electron portion of the Fock matrix, comprising

the Coulomb matrix J and an appropriate fraction cX of the exact Hartree–Fock exchange

matrix K; and Π denotes the antisymmetrized two-electron integrals. (Spin indices and

sums have been suppressed.) In the equations that follow, cX is taken to be 1, which is

the appropriate value for Hartree–Fock. The resulting screening expressions are general;

calculations using hybrid functionals (0 < cX ≤ 1) use the same screening criteria but scale

K after it has been constructed. Calculations using pure functionals, by contrast, simply

omit the exchange-related terms from any given screening prescription.

Taking permutational symmetry into account, the two-electron contributions to the en-

ergy are proportional to

E2e− ∝
∑
µνλσ

(µν|λσ) (2PµνPλσ︸ ︷︷ ︸
Coulomb

−PµλPνσ − PµσPνλ︸ ︷︷ ︸
exchange

), (12)

The overarching goal of screening is to avoid computing integrals unless they contribute

materially to the energy. An affordable estimate of the largest contribution from (µν|λσ) in

eq 12 is, therefore, required. The bracket representing the integral has the properties of an

inner product, so the Schwarz inequality can be invoked,29

(µν|λσ) ≤
√

(µν|µν)
√

(λσ|λσ) ≡ QµνQλσ. (13)

The Schwarz estimate QµνQλσ provides a rigorous upper bound on (µν|λσ) in terms of

the self-integrals of molecular-orbital pairs, which scale as O(N2). This bound could be

tightened further by taking the asymptotic R−1
µνλσ dependence of the exact integral into

account,24,32 but the common practice in atomic-orbital-based quantum chemistry has been

to use eq 13 without further refinement.

Because density-matrix elements are restricted in magnitude, |Pµν | ∈ [0, 1], eq 12 can be

converted into a rigorous estimate for the largest unsigned contribution to the energy from
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(µν|λσ),

E ≡ QµνQλσ max (2PµνPλσ, PµλPνσ, PµσPνλ) . (14)

The screening method suggested by this expression is to discard the integral if E is smaller

than a threshold εhard:

(µν|λσ)→ Θ(E − εhard) (µν|λσ) . (15)

In fact, such an approach would be unwise:28 Although computation of the SCF energy is

the aim, steady convergence of the SCF procedure hinges on the accuracy of the two-electron

portion of the Fock matrix, F2e− = P ·Π, which only includes a single factor of the density.

Thus, integrals with negligible estimated contributions to the energy may nevertheless be

important in the Fock matrix. Eq 14 can be adapted to reflect this observation by splitting

pairs of density-matrix elements,

F ≡ QµνQλσ max (2Pµν , 2Pλσ, Pµλ, Pµσ, Pνλ, Pνσ) . (16)

Screening is then equivalent to the replacement

(µν|λσ)→ Θ(F − εhard) (µν|λσ) . (17)

3. After SCF: Gradient screening

With the converged density matrix in-hand, the gradient can now be computed. Because

the density is obtained variationally, the only explicit contribution to the gradient from the

two-electron integrals is the term

(∇RE)2e− =
1

2
Tr P ·Π[R] ·P, (18)

where the superscript [R] is shorthand for the Cartesian gradient over all nuclear coordinates.

Any given integral depends on, at most, four nuclear coordinates, so the scaling of this term

is still formally O(N4).

A gradient-screening method could potentially be developed directly from eq 18 (or,

equivalently, from the gradient of eq 12).33 A rigorous, practical alternative is to take the

gradient of the energy-based screening prescription of eq 15, on the grounds that only those

integrals included in the energy should subsequently contribute to the gradient. The deriva-

tive of the Heaviside function is a delta function, so this contribution is given by

(µν|λσ)[R] → Θ
(
E − εhard

)
(µν|λσ)[R] + δ

(
E − εhard

)
E

[R]
(µν|λσ) . (19)

9



Screening-based MTS

The delta-function term in this expression has a straightforward meaning; it describes the

discontinuity in Θ which admits the integral into the energy calculation when E = εhard.

This term can be neglected in the gradient, because (1) the delta function goes to infinity

when its argument vanishes, which is unphysical, and (2) its effect is restricted to a single

value of E, which occurs with vanishingly small probability. Thus, gradient screening is

equivalent to the replacement

(µν|λσ)[R] → Θ
(
E − εhard

)
(µν|λσ)[R] . (20)

Eqs 15 and 17 may admit somewhat different sets of integrals, especially when εhard is large;

hence, eq 20 is “inconsistent” gradient screening.

To summarize, a complete prescription for two-electron-integral screening in a Hartree–

Fock or DFT calculation of the energy and gradient consists of (1) pre-screening shell pairs

against a threshold εshell using eq 9 and (2) screening contributions to the Fock matrix

and gradient against a threshold εhard using eqs 17 and 20. By analogy to SCF convergence

criteria, large thresholds are “loose,” in the sense that the resulting energy will exhibit errors

of comparable size, while small thresholds are “tight.”

B. Loose thresholds reveal flaws in hard screening

A screening-based multiple-timestep scheme will necessarily involve loosening the thresh-

old in the inner timesteps. Instead of varying the thresholds for shell-pair economization

and integral screening in the calculations that follow, the pre-screening threshold εshell is

tightened to the smallest value allowed (10−14) by the chosen development environment, Q-

Chem.34 This choice is motivated by the fact that shell-pair economization is not based on

a rigorous integral bound; rather, it is a numerical convenience. Consequently, varying εshell

can lead to unpredictable changes in the two-electron integrals. This lack of rigor is in direct

conflict with the intention to construct a multiple-timestep scheme based on well-controlled

changes in screening. The base method for screening-based multiple-timestepping therefore

consists of Fock-matrix-based integral screening (eq 17) and inconsistent gradient screening

(eq 20) using threshold εhard = 10−h, where h is a positive integer. For the sake of brevity,

we refer to this method as hard-i-h.

It may be advantageous for εhard to be looser than the chosen SCF convergence criterion,
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10−8 Eh. In order to establish the properties of hard screening in this unusual regime, HF/6-

31G∗ potential energy curves and gradients were computed for a series of diatomic molecules

— CO, He2, HCl, HF, H2, LiF, LiH, N2, and O2 — with bond separations R ∈ [0.5, 4.0] Å.

The increment between points was 0.025 Å, such that each surface was constructed from

141 individual gradient calculations. For each molecule, these calculations were repeated

over a range of integer thresholds, h ∈ [2, 14]. The effective floor on integral thresholds in

Q-Chem is h = 14, because the fundamental electron-repulsion integrals are computed by

modified Chebyshev interpolation from tabulated values, with a precision set to 10−(h+2).35

At the loosest thresholds (h = 2 and 3), the calculations unsurprisingly exhibited poor

convergence behavior, often failing to converge even after hundreds of SCF cycles using DIIS

extrapolation.36,37 These failures occur due to the exclusion of large integrals which are nec-

essary to obtain a well-converged solution to the Roothaan equations. For the remaining

thresholds, h ∈ [4, 14], all of the potential curves and gradients were visually indistinguish-

able on the scale of the plots. Subtle features in the curves for each method were revealed

by plotting unsigned energy and gradient differences with respect to hard-i-14, which is

treated as reference data.

As a concrete example, energy and gradient differences for lithium hydride, treated with

hard-i-4 screening, are plotted in Figures 1A and 1C. Both the energy and the gradient

exhibit discontinuities with respect to the reference curve, some of which lie very close to

(or even on top of) the potential minimum, which is the region most relevant for dynam-

ics. Discontinuities in the energy are of the same order as εhard, with concomitantly large

discontinuities in the gradient; further, large spikes in the energy are not always matched

by corresponding features in the gradient (and vice versa), confirming the expectation that

inconsistent gradient screening might be problematic at loose thresholds.

Any discontinuity in the energy and gradient will have deleterious effects in a molecular

dynamics simulation, because the system will experience unphysical, instantaneous impulses.

Inconsistencies in the gradient are especially troubling because they imply that the forces

used to integrate the trajectory will be fundamentally incorrect. The solution to this latter

problem is straightforward: The gradients should be screened using the Fock estimate of eq

16 rather than the energy estimate of eq 14,

(µν|λσ)[R] → Θ(F − εhard) (µν|λσ)[R] . (21)
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FIG. 1. Unsigned energy and gradient differences with respect to a hard-i-14 reference, |∆E|

and |∆(∂E/∂R)|, obtained using various screening methods for lithium hydride at the HF/6-31G∗

level of theory. Panels A and B show the energy differences for hard-4 and win-4,3, respectively;

gradient consistency is immaterial. Panel C shows the gradient differences for hard-i-4 (divided

by 19, blue dashed line) and hard-c-4 (red solid line); Panel D, the gradient differences for

win-i-4,3 (divided by 17, blue dashed line) and win-c-4,3 (red solid line). The dropline in each

panel indicates the optimum Li–H bond separation, R = 1.635749 Å. See Sections II B and II C

for detailed discussion.

When the Fock-based integral screening of eq 17 is paired with this consistent gradient

screening, the combined method is referred to as hard-c-h. The gradient results in Figure

1C show that, while still discontinuous, the hard-c-4 gradient is fully consistent with the

energy. Note that hard-i-14 results remain a good reference — they are indistinguishable

from hard-c-14, which only serves to emphasize that screening in the loose-threshold regime
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is qualitatively different from tighter screening.

C. Window screening

Remedying the remnant discontinuities that appear in hard energies and gradients at

loose thresholds requires an understanding of their origin. Hard screening effectively assigns a

binary weight to each integral, as dictated by the Heaviside weight function whard(F ; εhard) =

Θ
(
F − εhard

)
plotted in Figure 2A. Now, consider an integral with estimated Fock-matrix

contribution comparable to the threshold (F ≈ εhard) when the system is in some geometry

R. Whether that integral will be retained or discarded after a small perturbation to the

geometry, R + dR, will be determined by changes in the Schwarz estimates and density-

matrix elements constituting F . Depending on the sign and magnitude of these changes,

therefore, the integral can “blink” on or off. When εhard is very tight, blinking integrals will

have an insignificant effect on the energy and gradient, but when the threshold is sufficiently

loose, these integrals will lead to the observed discontinuities.

If screening-based multiple-timestepping is to be viable, a screening method must be

developed which is less sensitive to small changes in the integral estimate, such that the

corresponding potential energy curves and gradients will be continuous. To accomplish this

aim, the hard cutoff εhard is paired with a looser “soft” threshold εsoft = 10−s to form a

window spanning Ω ≡ h−s orders of magnitude. This approach is hereafter termed window

screening.

Within the window, each integral is assigned a fractional weight from a smoothly-varying

function satisfying two conditions: First, integrals with estimates close to εhard should be

assigned very small weights, such that blinking is a more modest source of error. Second,

integrals with estimates close to εsoft should be rescaled only very delicately, with integrals

above the soft threshold carrying full weight. Sigmoid functions of the logarithm of the

estimate, f ≡ − logF , have just these properties; a quintic spline with vanishing first and

second derivatives at the boundaries of the window is chosen here, in direct analogy to

smoothing functions used in force-field-based multiple-timestep approaches.38,39

The window-screening approach for the energy is therefore defined by the replacement

(µν|λσ)→ w(f ;h, s) (µν|λσ) , (22)
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FIG. 2. Weight functions used in integral screening as a function of the logarithm of the integral

estimate. Panel A depicts a hard-10 weight function (blue dashed line) and a win-6,5 window-

screening function (red solid line), as described in Section II C. Panel B depicts the corresponding

bandpass-screening function, eq 44.

where the weight function w is

w(f ;h, s) =


1, f ≤ s

1 + u3(15u− 6u2 − 10), s < f < h

0, f ≥ h

(23)

with spline variable u given by

u(f ;h, s) =
f − s

Ω
. (24)

An example of this weight function is plotted in Figure 2A. As may be apparent from the

figure, w = u = 1
2

at the midpoint of the window, f = s + (Ω/2). Equivalently, integrals

(
√

10)Ω times smaller than the soft threshold — a bit more than a factor of 3, for an integer

window — will be assigned half weight or less.
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Because eq 23 recovers the Heaviside function when h = s, window screening can be

understood as a hard screening generalization, which generates the same set of two-electron

integrals but is not as susceptible to blinking errors. Additional error is incurred because the

integrals have been rescaled (thereby interpolating between hard-h and hard-s results), but

Figure 1B indicates that the largest errors only increase by a factor of 2. Importantly, these

errors are associated with smooth features in the potential-energy surface, which demon-

strates that the desired aim has been achieved. In practice, an integer window has been

found to achieve the best compromise between accuracy and smoothing.

Of course, the discontinuities that appear in the gradient must also be smoothed. As

before, the gradient of eq 22 is taken to obtain

(µν|λσ)[R] → w(f ;h, s) (µν|λσ)[R] +
∂w

∂f
f

[R]
(µν|λσ) . (25)

The quintic spline w was chosen because its derivatives vanish at the boundaries of the

window, which significantly limits the effect of the weight-function derivative in eq 25. But

unlike the delta function that initially appeared in the hard gradient (eq 19), this term is

neither patently unphysical nor restricted in effect to a single value of f :

∂w

∂f
=


0, f ≤ s

−30
Ω
u2(u− 1)2, s < f < h

0 f ≥ h.

(26)

The derivative smoothly increases from zero at either boundary to a modest value of

(∂w/∂f) = −(15/8Ω) at the center of window. The gradient of f is given by

f
[R]

= −
(
logF

)[R]
= −

(
lnF

ln 10

)[R]

= − F
[R]

F ln 10
. (27)

Evaluating the gradient of the Fock-matrix estimate (eq 16) and canceling terms,

∂w

∂f
f

[R]
(µν|λσ) =

30u2(u− 1)2

Ω ln 10

(
Q

[R]
µν

Qµν

+
Q

[R]
λσ

Qλσ

+
P

[R]
max

Pmax

)
(µν|λσ) , (28)

where Pmax is shorthand for the largest of the density-matrix elements in eq 16.

Each Schwarz-gradient term in eq 28 will vanish identically for all nuclear coordinates but

those of the (one or two) centers forming the relevant orbital pair. For those coordinates,

the asymptotic behavior will be, for example,

Q
[RA]
µν

Qµν

∼ RABe
−αµνR2

AB

e−αµνR
2
AB

, (29)
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which tends to zero in the limit of small or large internuclear separations. These terms may,

therefore, be discarded with little or no effect.

The density gradient P
[R]
max will be largest when perturbations to the geometry strongly

mix occupied and virtual orbitals, such as when the HOMO–LUMO gap is small. To the

extent that Hartree–Fock and DFT are unreliable in the limit of vanishing fundamental

gap, this term is discarded, too. There is an additional practical reasons for doing so: To

evaluate P
[R]
max exactly would require that the coupled-perturbed Hartree–Fock or Kohn–

Sham equations be solved, at significant additional cost.40–44 As shown below, neglecting

this gradient has no serious consequences for MD; in fact, the statistical properties of the

dynamics improve when window-screened gradients are used.

In light of the above discussion, the consistent window screening method win-c-h, s is

implemented for gradients as

(µν|λσ)[R] → w(f ;h, s) (µν|λσ)[R] . (30)

Inconsistent screening (win-i-h, s) can be performed instead by replacing f in eq 30 with

the negative logarithm of the energy estimate E (eq 14).

Lithium hydride gradients obtained using these methods are shown in Figure 1D. As was

observed for the energy, the size of the errors in the gradient increases by a factor of 2 or

3; the associated discontinuities are fully smoothed. Moreover, the behavior of the win-c

gradient is consistent with the behavior of the energy.

D. Formulation and validation of screening-based multiple-timestepping

Having established that window-screening methods smooth the discontinuities engen-

dered in potential energy surfaces and gradients by standard screening approaches, this sec-

tion examines the effect of screening method on the statistical properties of single-timestep

ab initio molecular dynamics trajectories in the microcanonical ensemble. To probe the

effect of screening, the water dimer was simulated with HF/3-21G. The initial configuration

of the system was obtained by reoptimizing the minimum-energy structure from the Cam-

bridge Cluster Database45,46 using hard-c-14 screening; initial velocities were identical in

all simulations and were sampled from the Maxwell–Boltzmann distribution at 298 K.

Trajectories were computed using a range of screening methods — hard and win; with and

without gradient consistency; with hard cutoffs h ∈ {4, 6, 8, 10, 12, 14} and soft thresholds
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s = h − 1; and with timesteps ∆t ∈ {5, 10, 15, 20, 30, 40, 50, 75, 100} au. Each trajectory

was integrated for a maximum of τsteps = 10, 000 steps or to the first instance of failed

SCF convergence. In this way, the longest viable timestep was found to be ∆t = 75 au;

when ∆t = 100 au, one of the water molecules invariably autoionized, followed closely

by SCF convergence failure. While this result is entirely dependent on the choice of SCF

convergence algorithm, the success or failure of a series of trajectories — each employing the

same convergence algorithm — is indicative of the robustness of the MD method. This result

also highlights the fact that AIMD functions as a reactive force field, and malignancies in

the forces or the molecular-dynamics integrator can lead to qualitatively incorrect behavior.

While symplectic integrators are guaranteed to yield energy-conserving trajectories for

small enough timesteps,47 step-to-step energy fluctuations are not guaranteed to vanish, and

these fluctuations are indicative of the quality of the integration. Energy conservation of

all complete trajectories was assessed using the time-average of these energy fluctuations

relative to the initial energy, E0:

〈δ〉 =

〈
Eτ − E0

E0

〉
=

1

τsteps

τsteps∑
τ=1

Eτ − E0

E0

. (31)

The smaller the value of 〈δ〉, the more closely the trajectory conserves energy.

The fluctuation data are presented in Figure 3. Curves for methods with h ≥ 10 are

indistinguishable, and only h = 10 curves are shown. Several conclusions can be drawn from

these data:

• Window screening makes trajectories with loose thresholds more robust against SCF

convergence failures, in exchange for a modest increase in the mean fluctuation. In

particular, the win-i-6,5 curve is complete, while the hard-i-6 curve is missing

several points. Further, some of the win-i-4,3 trajectories ran to completion, unlike

those using hard-i-4.

• Gradient consistency has a qualitative effect on energy conservation in loosely-screened

trajectories. Fluctuations in hard-c-6 were reduced by an order of magnitude relative

to hard-i-6, while fluctuations in win-c-6,5 and win-c-4,3 were reduced by a factor

of 100 relative to their inconsistently-screened counterparts.

• Window screening with a consistent gradient is surprisingly stable — all of the

win-c-4,3 trajectories ran to completion.
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FIG. 3. Mean energy fluctuations 〈δ〉 (eq 31) in completed HF/3-21G water-dimer trajectories

as a function of timestep and screening method. Panels A and B show fluctuations for hard and

win screening methods with inconsistent gradients, respectively; Panels C and D, with consistent

gradients. The horizontal line in each panel indicates the threshold below which the magnitude of

the mean energy fluctuation will be smaller than 10 µEh. See Section II D for detailed discussion.

The magnitude of the mean energy fluctuation provides a rational basis for selecting

the inner timestep (denoted δt) in screening-based MTS: δt is chosen such that the mean

energy fluctuation will be smaller than 10 µEh, equivalent to a 1% fluctuation in the effective

temperature of the microcanonical system. Keeping in mind that the total energy of this

test system is roughly 151 Eh, a timestep is desired with relative fluctuations smaller than

about 7 × 10−8, as indicated by the horizontal lines in Figure 3. Examination of the data

shows that the largest timestep meeting this criterion is δt = 20 au (0.484 fs), which is a

commonly-used step size for hyrdogen-containing systems.
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For the inner- and outer-timestep screening protocol, a pair of methods should be iden-

tified which are expected to provide stable, physically sensible trajectories, even for large

systems. Because the SCF procedure is converged strictly numerically, and because screened

energies and gradients are inexact (independent of any considerations related to windowing),

even symplectic integrators can lead to long-time energy drift. (This property is sometimes

addressed via extended-Lagrangian MD methods,48 which directly enforce energy conserva-

tion, at the expense of slightly perturbed dynamics.) Consequently, the estimated energy

drift over the course of the trajectory is a relevant figure of merit.

To establish whether a given trajectory drifted appreciably, the fluctuation data were

fit to a line, Et = mt + E0, using the Levenberg–Marquardt algorithm implemented in

gnuplot.49,50 The estimated unsigned drift over the length of the trajectory was then

computed as a fraction of the mean energy fluctuation,

ζ =
|m| tmax

E1〈δ〉
. (32)

Perfect energy conservation corresponds to vanishing m, or ζ = 0, while ζ > 1 indicates a

drift exceeding the typical fluctuations. Estimated drifts for the methods depicted in Figure

3 with ∆t = 20 au are listed in Table I. Note that consistent screening of the gradient leads

to significant reductions in the drift, as expected.

Selection of the outer-timestep screening method should be guided by the necessity of

describing the system reliably, while the inner-timestep screening should be as loose as pos-

sible while maintaining similar quality. The criterion for a high-quality trajectory is that the

drift in Table I should be no larger than 1% of the mean energy fluctuation. Consequently,

the hard-i-10 method was chosen as the screening method for the outer timestep, and

win-c-6,5 was chosen for the inner timestep. Because the statistical properties of these

methods are similar, the corresponding screening-based MTS scheme is broadly expected to

yield stable trajectories; the effect of looser screening in the inner timestep will be explored

in Section III B.

To test this expectation, the HF/3-21G water dimer was simulated for 4.84 ps, using be-

tween 1 and 10 inner timesteps of fixed size δt = 20 au. (While not strictly an MTS method,

using a single inner timestep is equivalent to performing sequential momentum updates us-

ing the partitioned forces and closely tracks the single-timestep hard-i-10 trajectory.) As

Figure 4 shows, fluctuations in the resulting trajectories are effectively constant — the sub-
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Screening Threshold(s) ζ (%)

hard-i 10 0.00

8 6.41

6 235.43

hard-c 10 0.00

8 0.00

6 15.05

win-i 10,9 0.00

8,7 7.73

6,5 205.53

4,3 71.01

win-c 10,9 0.00

8,7 0.00

6,5 0.27

4,3 296.69

TABLE I. Estimated energy drifts ζ (eq 32) as a percentage of mean energy fluctuations for HF/3-

21G water-dimer trajectories integrated with timestep ∆t = 20 au. Drift percentages are not

strictly comparable between the hard and win methods; mean energy fluctuations are generally

larger in the latter case, as shown in Figure 3.

tle oscillations are a small-system artifact — and are narrowly distributed around the value

observed for the single-timestep method. This encouraging result is not as mysterious as it

may at first appear: The win-c-6,5 inner-timestep method was chosen to exhibit compara-

ble fluctuations to hard-i-10, and this behavior is reproduced in the MTS data. The drift

is consistent, as well, remaining smaller than ζ = 1% until ∆t = 140 au and increasing to

no more than a few percent (ζ ≈ 3.11%) at ∆t = 200 au.

The screening-based MTS scheme is now complete — n inner timesteps of length δt =

20 au are integrated using win-c-6,5 screening, followed by an outer-timestep momentum

correction using hard-i-10 screening — and it has been shown to be stable. Now this MTS

scheme will be justified on physical (rather than purely numerical) grounds, on the basis of

an associated timescale separation. To this end, water-dimer configurations were extracted
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multiple-timestep trajectories as a function of outer timestep. The fluctuations are largely deter-

mined by the inner-timestep method.

from a single-timestep hard-i-10 trajectory with ∆t = 20 au; gradient calculations were

then performed on these geometries using win-c-6,5. The difference between the hard-i-10

and win-c-6,5 results is shown for the energy and for a single force component in Figure 5;

this difference yields the effective contribution to these quantities from those integrals with

estimated magnitude between 10−6 and 10−10, with fractional contributions from integrals as

large as 10−5. Thus, any higher-frequency features in the hard-i-10 energy and force must

be associated with integrals of larger magnitude. These results lead to the conclusion that

a separation in timescale between larger and smaller integrals does indeed exist, consistent

with the original motivation for this approach. As such, screening-based MTS is more than

just an ad hoc method.

E. Computational cost considerations for ab initio MTS

With the results of Section II D in hand, MTS could immediately be applied to realistic

chemical systems. In doing so, however, an important distinction between classical and

ab initio MTS would be neglected. Suppose that the inner timestep δt is appropriate for

integrating the dynamics of a system with single-timestep integration methods. The cost of
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FIG. 5. Phenomenological timescale separation in the energy and a force component of the HF/3-

21G water dimer. Panel A shows the energy relative to the initial energy E0 for the hard-i-10

method (red or grey line) and the energy difference between hard-i-10 and the same trajectory

reevaluated using win-c-6,5 (scaled up by a factor of 100, black line). Panel B makes a similar

comparison for the force component associated with the Cartesian x coordinate of one of the

hydrogens, as illustrated at lower left. See Section II D for detailed discussion.

incrementing the system by an outer timestep ∆t = nδt is then

cost of increment =

nS, single-timestep integrator

nI +O, multiple-timestep integrator,
(33)

where I is the composite cost of the energy and gradient in the inner timestep, O is the cost

of the outer timestep, and S is the equivalent cost for the single-timestep method.

In classical MTS, S is simply the cost of evaluating the complete set of analytic energy

and gradient functions describing the system; in the ab initio case, S is the cost of computing
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the energy and gradient at the same level of theory as in the outer timestep. Thus,

S =

I +O, classical MTS

O, ab initio MTS.
(34)

Eqs 33 and 34 imply that classical MTS will be cheaper than the single-timestep equivalent

whenever I < S; any non-trivial partitioning of the system is guaranteed to meet this

requirement. The ab initio case is qualitatively different: MTS with n inner timesteps will

only be cheaper than the single-timestep method when

I <
n− 1

n
O. (35)

In other words, the repeated work at the outer ab initio timestep leads to an overhead,

not present in classical MD, that sets a lower bound on the number of inner timesteps

that will lead to computational savings. Choosing n to exceed this bound may not be

practicable, due to resonance considerations51–55 or to long physical timescales in a given

system. The approach taken here is to dig further into the workings of the electronic-

structure methodology in order to minimize this overhead. In particular, by carrying forward

information from the inner timesteps, much of the repeated outer-timestep effort can be

eliminated. As a result, eq 35 may be rewritten as

I <
n− κ
n

O (36)

with κ < 1, subverting what appeared to be a hard inequality. The smaller the value of κ,

the more favorable MTS will be.

1. SCF considerations

In the trivial case that the method used to screen the energies does not change — as is

true when only switching gradient consistency, or for correlation-based MTS20 — the inner-

and outer-timestep energies will be identical. Thus, the SCF procedure can be skipped

altogether, and the gradient can be computed using the inner-timestep density, Pi. Of

course, the present hard-i-10/win-c-6,5 MTS scheme is not so simple; this possibility is

mentioned strictly for completeness.

A more relevant and general improvement involves the initial SCF guess. Pi is an ap-

proximation to the desired outer-timestep density, Po; it can, therefore, be used as the initial
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guess for Po. Although the initial Fock matrix will be more expensive to construct than

that associated with a sparse guess formed by superposition of atomic densities (Q-Chem’s

default), the total number of SCF cycles at the higher level of theory will be appreciably

reduced.

2. DFT quadrature considerations

In calculations using density functional theory, the exchange-correlation functional must

be integrated in order to obtain the exchange-correlation energy:

EXC =

∫
drF [ρ(r)] , (37)

where F is the density functional and the the real-space density is

ρ(r) =
∑
µν

Pµνφ
∗
µ(r)φν(r). (38)

Because eq 37 involves a continuous integral over many atomic centers, it is difficult to

evaluate straightforwardly. Thus, it is customarily decomposed into a sum of discretized,

single-center integrals,56

EXC ≈
nuclei∑
A

electrons∑
i

ωAiF [ρ(rAi)] , (39)

where grid points rAi and Becke weights ωAi have been introduced. The Becke weights

specify the partitioning of real space among individual “fuzzy” atoms;57 taken together, the

points {rAi} form the quadrature grid. Instead of reconstructing this threshold-independent

grid information (as well as the Becke-weight derivatives, which are required to construct

the exchange-correlation vectors in the Kohn–Sham Fock matrix), this information can be

reused in the outer timestep.

Because density functionals are typically nonlinear and often extremely complicated, a

common approach to reducing the cost of Gaussian quadrature is to neglect contributions

to the density ρ(r) from density-matrix elements smaller than some threshold εquad. This

threshold, much like the threshold for shell-pair economization, remains fixed throughout the

present calculations, so the exchange-correlation energy and vectors need not be recalculated

when building the initial Fock matrix; the inner-timestep results can be used instead. A

small Fock matrix error is incurred in this process — the readily available set of inner-

timestep exchange-correlation vectors is obtained by quadrature from an almost-converged
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density, Pa, rather than Pi — but this error will be rectified in subsequent SCF cycles.

A reasonable alternative to reusing grid information, then, is simply to skip quadrature

altogether in the first SCF cycle of the outer timestep.

3. Bandpass screening

The improved SCF guess described in Section II E 1 reduces the number of SCF cycles

in the outer timestep considerably. Accordingly, the initial outer-timestep SCF cycle can

be associated with an appreciable fraction of the cost of the MD step as a whole, and

measures reducing that cost may be useful. When the outer timestep of a screening-based

MTS increment is entered, Coulomb and exchange matrices from the lower level of theory

remain on hand. If the increment in these matrices associated with the change in screening

can be accurately computed — in a similar spirit to standard Fock-matrix increments58,59

— additional savings in the initial Fock build can be obtained. The procedure by which this

aim will be accomplished is called bandpass screening.

At convergence in the last inner timestep, the Coulomb and exchange matrices are given

by the contraction

F2e−

i = Pi ·Π(i)
i , (40)

where Π
(i)
i is the weighted set of two-electron integrals that survive screening of Pi ·Π by the

chosen inner-timestep method. (Note that when Π appears without labels, it represents the

complete, unweighted set of two-electron integrals.) Because Pi is used as an initial guess in

the subsequent outer timestep, the Coulomb and exchange contributions to the initial Fock

matrix are

initial F2e−

o = Pi ·Π(o)
i , (41)

where Π
(o)
i is the weighted set of two-electron integrals that survive screening of Pi ·Π by

the chosen outer-timestep method.

A formal connection between these sets can be made,

Π
(o)
i ≡ Π

(i)
i + ∆Π

(oi)
i , (42)

such that

initial F2e−

o = Pi ·Π(i)
i + Pi ·∆Π

(oi)
i . (43)
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∆Π
(oi)
i accounts for the reweighting of integrals when the screening method is changed, sub-

ject to a fixed density. To be precise, each member of Π
(i)
i has a weight w

(i)
i ≡ w(f i;h

(i), s(i)),

where f i ≡ − logF (Pi), and similarly for members of Π
(o)
i . The weight of a member of

∆Π
(oi)
i is therefore given by

∆w
(oi)
i =


0, f i ≤ min(s(i), s(o))

w
(o)
i − w

(i)
i , min(s(i), s(o)) < f i < max(h(i), h(o))

0, f i ≥ max(h(i), h(o)),

(44)

where {h(i), s(i)} and {h(i), s(i)} are the hard cutoff and soft threshold of the inner- and outer-

timestep screening methods, respectively. As shown in Fig. 2B, this weight function excludes

integrals estimated to be above the larger soft threshold or below the smaller hard cutoff

— in other words, it is a bandpass filter designed to retain only those integrals weighted

differently by the two screening methods. Bandpassing will be most beneficial when the

inner- and outer-timestep screening methods assign different weights to a relatively small

range of integrals.

In developing this bandpass idea, Pi · Π(i)
i was assumed to be readily available in the

outer timestep. In Q-Chem, the last available Coulomb and exchange matrices are instead

those associated with the almost-converged density from the penultimate inner-timestep SCF

cycle, Pa. The almost- and fully-converged densities (and the corresponding integral sets)

can be related using the definitions

Pi ≡ Pa + ∆Pia (45a)

Π
(i)
i ≡ Π(i)

a + ∆Π
(i)
ia . (45b)

∆Π
(i)
ia accounts for the reweighting of integrals when the density changes with fixed screening

method, and its members have bandpass weights different from those given in eq 44, namely,

∆w
(i)
ia =


0, f i, fa ≤ s(i)

w
(i)
i − w

(i)
a , in all other cases

0, f i, fa ≥ h(i).

(46)

These weights are not the same as those obtained by screening ∆Pia · Π — the weight

function is nonlinear.
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Combining eqs 43 and 45, the outer-timestep Coulomb and exchange matrices can be

rewritten as

initial F2e−

o = Pa ·Π(i)
a + Pi ·∆Π

(i)
ia + ∆Pia ·Π(i)

a + Pi ·∆Π
(oi)
i . (47)

As long as SCF convergence parameters are sufficiently tight (such as the 10−8 Eh setting

used in this work), the density difference between the final SCF cycles of the inner timestep

will be small enough that the cross terms involving both densities can be discarded. The

resulting bandpass prescription is very similar to eq 43,

initial F2e−

o = Pa ·Π(i)
a + Pi ·∆Π

(oi)
i , (48)

and can be implemented with minor modifications to existing SCF routines.

Finally, a bandpass-screening approach for the two-electron-integral contribution to the

gradient is formally possible, but this approach is not cost-effective. Because this bandpass-

ing would involve contractions with the difference in converged densities from the inner and

outer timesteps — which, in general, are not sufficiently small to discard — this approach

would lead to prohibitive additional cost.

III. RESULTS

With the formulation, validation, and cost analysis of the screening-based MTS scheme

completed, application of the method to a challenging chemical system is now possible.

Here, the MTS scheme — as implemented in a development version of Q-Chem34 — is

applied to a biological model, the protonated sarcosine-glycine dipeptide embedded in a

19-water cluster. Although this choice of model was inspired by recent experiments using

gas-phase SarGlyH+ as a testbed for understanding the structural and dynamical effects of

peptide methylation,60,61 these phenomena are not addressed in this work. Rather, a simple

demonstration is made that screening-based MTS realizes significant computational savings

for a reasonably large system containing 29 heavy atoms and 268 electrons.

The ground-state dynamics of SarGlyH+(H2O)19 were simulated at both the Hartree–

Fock and B3LYP levels of theory using the 6-31G∗∗ basis set (corresponding to a total

of 680 basis functions) and a serial implementation of the underlying electronic structure

methodology. The initial configuration of the system, shown in Figure 6, was obtained by
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FIG. 6. Protonated-sarcosine/glycine dipeptide embedded in a 19-water cluster.

building SarGlyH+ in IQmol;62 optimizing the structure with the MMFF94s force field;63

inserting the optimized dipeptide in the HF/6-31G∗∗ minimum-energy structure of (H2O)19

from the Cambridge Cluster Database;45,46 and reoptimizing with MMFF94s. Initial veloc-

ities were sampled from the Maxwell–Boltzmann distribution at 298 K. As before, the base

inner timestep for the MTS trajectories was δt = 20 au. Timesteps were screened using

hard-i-10 (outer) and win-c-6,5 (inner) methods. All trajectories were propagated for at

least 480 au (11.6 fs); for purposes of timing comparison, single-timestep simulations using

hard-i-10 and win-c-6,5 were also performed.

A. Outer-timestep efficiencies are large

In order to assess the usefulness of the strategies proposed in Section II E for reducing the

cost of the hard-i-10 outer timestep, a series of simulations was performed in which the

algorithmic improvements were added hierarchically. Consequently, three types of Hartree–

Fock calculation were performed:

1. no-band: A Hartree–Fock calculation with no improvements.

2. only-r: The inner-timestep density Pi is used as a guess.

3. both-rb: Bandpass screening is applied, in addition to only-r.

Because DFT includes additional efficiencies related to the quadrature grid, there were five

types of B3LYP calculation:

1. no-band: A B3LYP calculation with no improvements.
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2. only-g: Quadrature-grid information is reused.

3. both-gr: Pi is used as a guess, in addition to only-g.

4. gr-and-b: Bandpass screening is applied, in addition to both-gr.

5. full-grbq: DFT quadrature results are reused, in addition to gr-and-b.

As the comparisons in Figure 7 show, reusing the density overwhelms all other efficiencies,

reducing the cost of the outer timestep roughly by half for both Hartree–Fock and B3LYP.

Additional savings accrue in B3LYP calculations when quadrature information is reused,

reducing the cost by a further ≈ 12%. While bandpassing produces more modest savings,

the aggregate effect of a few seconds’ saving per outer timestep can be significant for long

trajectories.

Figure 7 shows that an HF/both-rb outer timestep is comparable in cost to an inner

timestep. Further, B3LYP/full-grbq outer timesteps are actually cheaper, such that the

inner timesteps become the computational bottleneck. In both cases, these steep reductions

stem from the fact that much of the effort required to converge the hard-i-10 calculation

has already been done in the preceding inner timestep. Therefore, the goal of addressing

outer-timestep “overhead,” as discussed in Section II E, has largely been met.

B. Minimal multiple-timestepping realizes significant savings

Table II lists the average CPU minutes required to simulate the SarGlyH+(H2O)19 sys-

tem for a femtosecond as a function of the number of inner timesteps, n. The ratio between

single-timestep timings for hard-i-10 and win-c-6,5 provides an estimate of the maximum

theoretically-achievable acceleration in these calculations — roughly 87% for Hartree–Fock

and 35% for B3LYP. The smaller percentage for B3LYP reflects the fact that DFT quadra-

ture adds what amounts to a fixed cost in each and every SCF cycle (apart from the initial

Fock build in the outer timestep).

Figure 8 presents the same data graphically, clearly showing that roughly a fifth of the

achievable speed-up for Hartree–Fock is realized with a minimal MTS scheme (n = 2), and

more than half is realized when n = 4. (The same trend holds for B3LYP.) These results

are due entirely to the overhead-trimming interventions in the outer timestep, as evidenced
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FIG. 7. Average CPU seconds required to compute the hard-i-10 outer-timestep energy and

gradient in AIMD simulations of the SarGlyH+(H2O)19 system using Hartree–Fock and B3LYP

in 6-31G∗∗ basis set. hard-i-10 and win-c-6,5 denote costs from single-timestep trajectories,

while the other labels indicate the cost of the outer timestep in screening-based MTS trajectories

exploiting efficiencies to differing degrees. See Section III A for detailed discussion.

by näıve MTS calculations costing more than a single-timestep calculation until n = 3 for

HF or n = 4 for B3LYP. Reusing information in the outer timestep has effectively skirted

the cost inequality that governs ab initio MTS (eq 35); the effective values of the constant

κ in eq 36 derived from our simulations are κHF ≈ 0.57 and κB3LYP ≈ 0.47. These constants

are not necessarily transferable between systems, but future analysis will establish whether

they are typical.
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n
Method

Hartree–Fock B3LYP

1h 15.10 29.37

2 12.44 28.49

3 11.32 26.22

4 10.23 25.10

5 9.82 24.21

6 9.55 23.79

7 9.36 23.19

8 9.22 23.25

9 9.10 22.53

10 9.06 22.18

11 8.97 21.91

12 8.96 22.35

1w 8.07 21.73

TABLE II. Average CPU minutes per simulated fs as a function of the number of inner timesteps

n for fully-bandpassed (HF/both-rb or B3LYP/full-grbq) screening-based MTS simulations of the

SarGlyH+(H2O)19 system in the 6-31G∗∗ basis set. “1h” and “1w” denote single-timestep simula-

tions using hard-i-10 and win-c-6,5, respectively.

C. Looser inner-timestep screening can provide further savings

The hard-i-10/win-c-6,5 MTS scheme was constructed to satisfy fairly stringent crite-

ria for statistical properties of the corresponding single-timestep trajectories on a picosecond

timescale. As noted in Section II D, looser screening in the inner timestep may still yield

quality results to the extent that inaccuracies in the inner timestep are corrected by frequent-

enough outer timesteps. Here, the degree to which loosening the threshold affects the savings

achievable for SarGlyH+(H2O)19 is examined.

Looser screening reduces the time required for each SCF cycle, but the errors introduced

into the density can make it harder to achieve SCF convergence, such that the average

number of cycles increases. For any given system, then, a regime may exist in which loos-
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FIG. 8. The speed-up of screening-based MTS simulations of the SarGlyH+(H2O)19 system in the

6-31G∗∗ basis set. Red stars indicate the fully-bandpassed results (HF/both-rb or B3LYP/full-

grbq, cf. Table II), while blue boxes are data for simulations without any use of efficiencies in the

outer timestep. The solid and dashed black lines indicate the single-timestep cost of the hard-i-10

and win-c-6,5 methods, respectively. Results below the black line indicate cases where the cost

of the MTS simulation would be more expensive than a single-timestep without bandpassing.

ening the threshold makes the calculation more expensive. As a case in point, SCF did not

converge when a win-c-4,3 was used for SarGlyH+(H2O)19. Therefore, narrower windows

were tried — s ∈ {3.12, 3.3, 3.6}, corresponding roughly to 2.5 × 10−4 steps in integral

magnitude between the hard cutoff and soft threshold. (A narrower window reduces errors

associated with integral rescaling, which could restore convergence, but it also reduces ro-

bustness against blinking.) The narrow-window B3LYP calculations never converged, while

the HF calculations were costlier than win-c-6,5, owing to a sharp increase in the number

of SCF cycles required (as much as a factor of 6.5). The aggressive win-c-4,3 method was

ultimately abandoned for the present application, and win-c-5,4 was tested instead. While
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n
Method

Hartree–Fock B3LYP

1h 15.10 29.37

2 11.78 32.62

3 10.27 29.64

4 9.09 27.91

5 8.52 26.83

6 8.21 26.24

7 7.93 25.49

8 7.73 25.39

9 7.66 24.86

10 7.48 24.33

11 7.36 24.16

12 7.29 24.58

1w 6.42 23.34

TABLE III. Average CPU minutes per simulated fs as a function of the number of inner timesteps

n for fully-bandpassed (HF/both-rb or B3LYP/full-grbq) screening-based MTS simulations of the

SarGlyH+(H2O)19 system in the 6-31G∗∗ basis set. “1h” and “1w” denote single-timestep simula-

tions using hard-i-10 and win-c-5,4, respectively.

both HF and B3LYP calculations converged, only the HF trajectories were cheaper than

the corresponding win-c-6,5 calculations — by about 20%, as shown in Table III.

Another consequence of looser screening in the inner timestep is that the various efficien-

cies discussed in Section II E can be less useful, as shown in Figure 9. In particular, because

the density from the last inner timestep is not as good of a guess for the outer-timestep

density, the number of SCF cycles required is not reduced as sharply. These more modest

savings — equivalent to κHF ≈ 0.67 and κB3LYP ≈ 0.59 — are compensated in the case of

Hartree–Fock by the fact that the inner timestep cost is significantly reduced. As a result,

win-c-5,4/hard-i-10 MTS always involves some speed-up, as shown in Figure 10A, and

about half of the roughly 135% theoretically-achievable speed-up is realized when n = 4. By
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FIG. 9. Average CPU seconds required to compute the hard-i-10 outer-timestep energy and

gradient in AIMD simulations of the SarGlyH+(H2O)19 system using Hartree–Fock and B3LYP in

the 6-31G∗∗ basis set. hard-i-10 and win-c-5,4 denote costs from single-timestep trajectories,

while the other labels indicate the cost of the outer timestep in screening-based MTS trajectories

exploiting efficiencies to differing degrees. See Section III A for detailed discussion.

contrast, n = 4 is the minimum number of inner timesteps required for B3LYP to achieve

even a modest speed-up, as shown in Figure 10B. In light of these results, a wise practice

would be to compare timings for a small number of possible inner-timestep methods and

single increments of the corresponding MTS protocol before committing to a specific scheme.

Finally, it is worth noting that these timing assessments are fairly conservative, due to the

fact that screening-based multiple-timestepping has been evaluated with all other parameters

fixed. Algorithmic improvements in the outer timestep led to a situation in which the inner

timesteps are cost-dominant — an inversion of the usual relationship. Because a much

looser threshold is employed when screening these inner steps, a looser SCF convergence

criterion could likely be employed as well, reducing the inner-timestep cost and increasing
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FIG. 10. The speed-up of screening-based MTS simulations of the SarGlyH+(H2O)19 system in

the 6-31G∗∗ basis set. Red stars indicate the fully-bandpassed results (HF/both-rb or B3LYP/full-

grbq, cf. Table III), while blue boxes are data for simulations without any use of efficiencies in the

outer timestep. The solid and dashed black lines indicate the single-timestep cost of the hard-i-10

and win-c-5,4 methods, respectively. Results below the black line indicate cases where the cost

of the MTS simulation is more expensive than the single-timestep method.

the theoretically-achievable speed-up. Established AIMD extrapolation techniques (such

as Fock-matrix extrapolation64,65) could also potentially be applied to reduce the cost of

the inner timesteps. Finally, the shorter spatial extent of the inner-timestep thresholding

suggests that linearly scaling SCF algorithms would likely become effective sooner, with

respect to system size, than the analogous tight-threshold outer step. In this large-system

regime, relative timings would likely improve further.
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IV. CONCLUDING REMARKS

This work addressed the question of whether multiple-timestep methods could be applied

to Hartree–Fock or DFT molecular dynamics on a firmer-than-ad-hoc basis. This question

was answered affirmatively by showing that two-electron integrals of disparate magnitude are

associated with forces that vary on disparate timescales. In the process, a multiple-timestep

scheme was formulated using classic hard-cutoff screening techniques and a window-screening

method of our own devising. Once efficiencies in the outer-timestep were identified and

exploited, this multiple-timestep protocol realized computational savings with minimal or

small numbers of inner timesteps (n = 2−−4).

The Schwarz-based integral estimates in this work highlight only one possibility for

screening-based multiple-timestep AIMD; the same principles should apply to more sophis-

ticated screening protocols, such as those based on multipole expansions. In particular,

screening methods which explicitly account for the asymptotic decay of interactions be-

tween µν and λσ orbital pairs are likely to introduce additional opportunities for dynamics

acceleration: Because the corresponding inequalities provide tighter bounds on integral mag-

nitudes, inner timesteps may be significantly cheaper; at the same time, the corresponding

range and timescale separations may be more pronounced.

The field of multiple-timestep Born–Oppenheimer molecular dynamics is still quite young,

and many possible correspondences between electronic-structure parameters and physical

timescale separations remain to be tested. Varying these parameters is expected to lead to a

new appreciation of hidden pathologies in commonly used AIMD protocols, just as varying

the threshold highlighted blinking integrals and gradient inconsistency. For example, the

SCF procedure is not iterated to exact convergence; as a result, the dynamics do not strictly

preserve phase-space area, leading to drift.3,66 Varying the SCF convergence criterion is

likely to exacerbate this problem, and stable trajectories may only be achievable within the

rigorously time-reversible approach of Niklasson et al.66

As the number of validated resources for multiple-timestep Hartree–Fock and DFT in-

creases, combining these methods directly may become useful. Combined methods may be

constructed by varying several parameters simultaneously, or in hierarchical fashion, with

inner timesteps subject to further Trotter splitting. The latter scenario requires careful

implementation, because the MTS framework must be flexible enough to combine different
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protocols to an arbitrary hierarchical depth while also allowing for the use of thermostats,

which are fully compatible with the r-RESPA formalism9,67,68.

Omnibus methods of either type may be viable for outer timesteps well above the onset

of resonance (∆t & 160 au ≈ 4 fs).51–55 Indeed, Figure 4 indicates that screening-based

multiple-timestepping already fits this description, although any resonance-related drift re-

mains modest. Translating existing resonance-resistant MTS methods69–78 into the ab initio

context may open the way to efficient, accurate, genuinely long-timescale ab initio molecular

dynamics.
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