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Abstract—Container clusters play an increasingly important
role in cloud computing for processing dynamic computing tasks.
The resource manager (i.e., orchestrater) of the cluster automates
the scheduling of the dynamic requests, effectively manages the
resources’ utilization across distributing infrastructure resources.
For many applications, the requests to the cluster are often
with restricted deadlines. The scheduling of container clusters
is often tricky, especially when the cluster’s size is large and the
load of the requests is dynamically changing. Machine learning-
based approaches such as reinforcement learning have attracted
lots of research attention during the past years; However, those
approaches suffer from low robustness when the requests in an
operational environment are changing and different from the
training data sets. This paper investigates this problem by quan-
tifying the robustness and proposing meta-gradient reinforcement
learning to improve the robustness of classical reinforcement
learning-based approaches. The proposed approach can lead
to better deadline guarantees and faster adaptation for time-
critical task scheduling under dynamic environments. We then
empirically test the benefits of our method using both real-world
and synthetic data sets. The evaluation results show that the
proposed method outperforms the compared RL methods in
scheduling performance and robustness.

Index Terms—resource management, task scheduling, rein-
forcement learning, robustness, meta learning.

I. INTRODUCTION

In cloud environments, container technologies provide

lightweight OS-level virtualization solution which can effec-

tively pack and deploy software components in remote infras-

tructures [1], [2]. The computing cluster for elastic container

deployment and execution, e.g., Kubernetes [3], play a crucial

role for not only automating software development and oper-

ation (DevOps) [4] but also in handling dynamic tasks driven

by external events, e.g., sensors [5], or human interactions [6].

Container clusters have now become a standard service offered

by most providers.

A container cluster’s resources are often managed by a

component called orchestrator, which schedules the dynamic

container deployment requests based on the constraints such

as resource demands of the request, available capacity in

the cluster, and expected quality of service application. In

many cases, requests with high-performance requirements, e.g.

processing video [7] and critical time constraints, e.g. scaling

services in cloud [8].

Empirical heuristics such as Shortest Job First(SJF) [9],

and FIFO [10] are effective for small-scale clusters but not

suitable for managing large infrastructures, specifically when

the types of requests are diverse and changing. Advanced

scheduling approaches based on multi-resource types [11],

dependencies among requests [12], resource budgets [13], and

deadlines of each requests [14] have attracted lots of research

attention during past years. Based on specific models of the

resources and requested tasks, those scheduling approaches

often show significant success in handling a specific type of

container requests but fail in large-scale handling clusters with

diverse requirements for deployment. Since 2013, machine

learning-based approaches have attracted lots of attention.

Zhang et al. [15] [16], apply scheduling policies acquired

through the former learning process; However, by revisiting

empirical methods and machine learning approaches above,

the goal always lies in achieving a scheduling model or set of

policies for a fixed environment without taking the dynamics

into account.

Reinforcement Learning (RL) is a typical example. In an

RL-based solution, deployment requests, cluster resources

are the action space. Scheduling decisions are based on the

feedback of the decision made through the learning process,

in which learning agents learn to make decisions through

interacting with the environment built on action space [17].

Mao et al. reported the advances of their RL-based solutions

[18]. However, in those works, the robustness of the solution

is often a big obstacle for utilizing those solutions in a new

operating environment where workloads of the requests are

different from the training data [19].

To improve the robustness of scheduling, Yao et al. ex-

plicitly model the uncertainties in the task demands during

the scheduling [20], and Singh et al. predict the future in-

coming workload and resource requirement based on time

series information [21]. Guo et al. improve the robustness in

the offloading strategy for computation with failure recovery

(RoFFR) [22] when aiming to reduce energy consumption and

shorten application completion time. Mireslami et al. tackle the

robustness of dynamic user demands using a hybrid method

to allocate cloud resources [23]. Most of those early works

focus on the specific patterns of uncertainties but not the

performance stability and the recovery under uncertainties.
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Moreover, not all solutions tackle the time-critical aspects of

the tasks, e.g., deadlines. We are motivated to investigate the

robustness issues with a clear focus on the RL-based approach

in the time-critical request scheduling in container clusters to

tackle these issues.

In this paper, to address RL-based scheduling performance

deviation and deadline guarantee failures to time-critical tasks

under dynamic environment, enlightened by [24], we present

a novel approach to improve the robustness of RL [25] by in-

tegrating Meta Learning [26] framework and demonstrate how

the proposed method can handle time-critical task scheduling

to new patterns of the tasks with just minor adaptation.

Furthermore, the paper presents a Meta Learning-based frame-

work integrated with RL, which improves scheduling per-

formance, robustness, and quantitative robustness assessment

metrics. The main contributions are as follows:

1) An improved time-critical task scheduling framework

exploits meta-learning and RL to improve scheduling

robustness.

2) A novel RL reward function and state representation

achieves better deadline guarantee.

3) Fast adaptation and shorter training time to fit dynamic

environments.

In the remainder of this paper, we will first review the

existing RL-based solutions for scheduling time-critical con-

tainer tasks in Section 2. Then, in Section 3, we present the

detailed framework and algorithm of the proposed meta RL-

based approach. Next, we evaluate the approach using both

a real-world data-set from operational research infrastructure

and synthetic data-sets in Section 4. Section 5 presents further

discussions on the experimental results and potential future

work. Finally, Section 6 summarizes the whole paper.

II. PROBLEM STATEMENT AND RELATED WORK

A. Time critical container deployment scheduling

In a container cluster, the orchestrator schedules the de-

ployment requests based on specific policies and automates

the resource allocation and deployment process, like shown in

Fig. 1.
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Fig. 1: Container scheduling processes.

A container cluster can be deployed on a set of virtual or

physical networked machines. The deployment requests are

generated by events, e.g., application controller or external

data sources; those requests often come with resource demand,

e.g., on the capacity of CPU or memory, and an optional

deadline when needed. The orchestrator handles the incom-

ing container deployment requests, allocates the available

resources of the cluster, and makes decisions on the suitable

actions, e.g., execute immediately, skip or discard the request.

During this life-cycle, the orchestrator aims to continuously

improve the scheduling quality to handle uncertainties in the

coming requests and the stability of the resources.

B. Related work

During the past decades, task scheduling has been exten-

sively studied in the context of resource management, e.g.,

cloud infrastructure services [27], IoT devices [28], and Edge

computing [29]. Different scheduling solutions have been

developed, e.g., using heuristics [30], or optimization methods

such as genetic algorithm [31] [32], ant colony algorithm

[33], and particle swarm algorithm [34] [34]. Those classical

approaches often rely on explicit models on resources or

workloads to design the scheduling policies and strategies

and are often for a specific type of system. A scheduling

solution must handle the complexity of highly customizable

and dynamic cloud infrastructure services in their model in

cloud environments, which requires profound optimization and

often in low efficiency. Machine learning-based approaches

have hence attracted lots of attention in the recent decade [15]

[16] [35]. Machine learning approaches are tried to handle

makespan of task flows [36], resource utilization rate [37],

Quality of Service [38] and pricing models [39].

Different machine learning methods have been tried: su-

pervised learning methods [40], unsupervised methods [41],

and Reinforcement Learning [17]. Among those approaches,

supervised learning-based approaches require well-curated la-

beled training data set, which is not always the case in many

infrastructures. Moreover, the quality of the training data

set directly influences the quality of the scheduling decision

processes. RL-based approaches do not require such labeled

data for training but rely on continuous feedback from the trial

decisions to improve the scheduling decision processes. RL-

Fig. 2: A basic Reinforcement Learning model

based approaches have been used for different purposes, e.g.,

for scheduling resources in data centers [18], for workflow

applications in container clusters [19] [42]. Those approaches

provide a continuous decision-making process to flexibly

handle the dynamic aspects of the cloud infrastructure during

the scheduling process [17]. Figure 2 shows a typical RL

framework [17], in which the agent acts as scheduler which

applies scheduling policies; the environment where tasks are

executed is represented as the state of the resources and tasks;

638



the action is the chosen scheduling policies for tasks. The

reward operation gives feedback to the agent on the effect of

the previous action.

The process of RL is straightforward [18] [36]; However,

the performance, in terms of learning time and accuracy of

the decision, highly depends on the design and configuration

of the learning pipeline. When applying a mature model

to a new environment, we can observe some performance

variation in classical approaches. This issue is also called the

robustness of the scheduling performance. These are some

work addressed this issue: robustness of heuristic methods

[43], measurements of scheduling robustness [44], graphical

approach for improvement of robustness [45]. However, com-

pared with the efficiency and performance of the scheduling

algorithm itself, the problem of performance robustness in

different environments has gained much less attention during

past years.

C. Problem statement

The performance robustness of a scheduler also refers to

the stability of its performance in a new environment, which

may have different resource models or task workloads. For

an RL-based scheduling solution, the high robustness of the

performance is ideal.

The performance robustness can be assessed from two

aspects:

1) The performance deviation right after the change of the

environment (e.g., change of the resource model or the

task workloads) can be measured as performance loss

compared to the stable performance.

2) The recovery time spent on adaptation or retraining

shows the ability of the algorithm to adapt to new

environments or changes.

Among machine learning-based approaches, the robustness
has been discussed mainly in the context of the transfer

learning approach [46]. On the other hand, lots of existing

researches focus on learning methods against adversarial at-

tacks by using approaches such as Fast Gradient Sign Method

(FGSM) [47], Projected Gradient Descent (PGD) [48], Carlini

and Wagner(C&W) attack [49], and Adversarial patch attack

[50]. In this context, robustness refers to learning quality

against the simulated data sources, which is not the same as

performance robustness.

In this paper, we specifically focus on the issue of perfor-

mance robustness. The critical question is how to improve the
performance robustness of an RL-based scheduler for different
types of time-critical task requests in a container cluster?
The solution should minimize the performance deviation and

retrain time while achieving the best scheduling (with minimal

deadline missing rate) for critical tasks. In the next section,

we will discuss a solution based on the meta-gradient RL

approach.

III. ROBUST META-RL FOR TIME CRITICAL SCHEDULING

As is shown in Figure 3, the whole process starts when a

new task arrives cloud platform, it will be sorted into a task

TABLE I: Notation of the system framework

Task properties:
Tj the task j ( j ∈ {1, ..., n})
Tarr
j arrival time of task j

dj resource demand of task j
Tlen
j theoretical execution length of taskj

σTj
(t) arrival rate of task j

T
fin
j execution finishing time of task j

Tex
j (t) execution update of task j at time t

Q
fu
Tj

(t) QoS fuse variable of task j at time t
QTj

(t) QoS variable of task j at time t

Resource availability Parameters:

Mi(t) available amount of resource i at time t
Reima(t) upper bound of resource i at time t

queue, depicted in the "State of Tasks" blank at the bottom

of the figure, waiting for execution actions from the learning

process in the center of the figure. Inside the learning process,

depicted in the middle named "Discrete Markov Decision

Process," each state has a scheduler learning policy model,

whose structure is depicted in the red block on the left named

"Deadline-Guarantee Task Scheduling"; the scheduler receives

resource availability information and task queue information

to calculate deadline critical reward function following Meta-

Learning framework in parallel via N RL learning agents.

After the learning process by RL agents, as depicted in the

middle green part, the meta learner adapts to the gradients

updates learned by RL agents to achieve the action for each

state to execute a chosen task. The meta-learning process is

depicted in the green block at the top of the figure, named

"Meta Learning-Based Adaptation." Finally, the framework

updates the system’s policy model and related parts of the

system: task queue and resource availability.

A. RL-Based Deadline-Guarantee Scheduling for Time-
critical Tasks

Firstly we present the deadline-guarantee scheduling based

on Reinforcement Learning to fit our problem formulation. As

a continuous decision making process, the scheduling process

can be seen a finite discrete-time Markov Decision Process

(MDP), where Reinforcement Learning is feasible to be formu-

lated. More specifically, a learning process M can be denoted

as a tuple (S,A, π,R, γ,H), where S represents state space,

A represents action space, H represents the number of tasks

to be calculated in each training iteration. The reward function

R is defined as the sum of rewards
∑H−1

t=0 r(st, at) from each

trajectory τ := (s0, a0, ..., sH−1, aH−1, sH), π denotes the

policy S × A π−→ R
+, which is characterized by θ, defined

as a probability distribution over actions: π(s, a) −→ [0, 1] and

γ ∈ (0, 1] denotes discount factor in cumulative rewards.

Time-Critical Task State Space S: As is shown in Fig 4:

the state space representation consists of resource availability,

nominated tasks pool, waiting for the queue, and discarded

queue. We convert the information of states into quantified

two-dimensional units with different colors in a coordinate

system. The example of state representation of one kind of
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Fig. 3: The Meta-Gradient RL Scheduling Framework

Fig. 4: State representation

resource is illustrated in Fig 4. In the representation, the colors

of units in the coordinate system represent tasks. The length of

units along the y axis represents time length, while the length

x axis represents the number of resources. The left green

area is the resource availability, where blank units represent

available units, while units in different colors represent these

resources being dominated by different tasks. The middle

orange area is full of nominated tasks, which are H task

samples chosen for the scheduler to pick. The right blue area

is the waiting queue of tasks, including new tasks. Moreover,

the waiting queue tasks are in proper order by its challenging

execution slowdown variable, which helps the agent schedule

more efficiently. The right gray part is the queue of tasks

discarded by the scheduler. The details of each part are as

follows:

Scheduling Action Space A: Action space is the set of

scheduling choices. During each time step, the scheduler

calculates the choices of H nominated tasks to make the action

decision. Thus each iteration H tasks (here we set it up to 50)

get nominated from the waiting queue to be candidates of

allocation. The decisions of allocation are made according to

the policy model. The choices for each task include: executing,

skipping, and discarding. After action gets taken, a new task

will be nominated to the H tasks nominated queue. With the

hard deadline scheme, the agent firstly checks Qfu
Tj
(t) of a

task; if it is negative, the agent will discard this task. After each

iteration of calculation, if the task Tj does not get execution

action, its variable Qfu
Tj
(t) gets deducted by one. By so doing

Qfu
Tj
(t) shows if a task missed deadline. There is a final check

with the executive action to ensure current resource availability

meets the selected task’s request. If not, the scheduler will skip

that task.

Calculation of Scheduling Policy π: The scheduling policy

is trained by a two-layer fully-connected neural network [51].

The activation function is rectified linear unit (ReLU), softmax.

The input to the NN is the state representation. The hidden

layer has 30 neurons. The output of the first layer is the

probability distribution of selecting each task of the nominated
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queue in the number of H for execution; based on this

probability distribution, the second layer outputs the selection

of the chosen task to execute. Within this process, the action

space decrease from 3H choices to H .

After achieving scheduling policies π, the learning for the

current environment is finished. However, there exist dynamics

in the environment. Every time some part of the setup or envi-

ronment changes, the model needs proper time to retrain, even

subject to the change’s influence. When it comes to scheduling

problems for time-critical tasks, the time of retraining needs to

be as short as possible. To this end, more general and robust

learning is our ideal approach instead of conventional ones. As

a learning approach to achieve a more general model, Meta-

Learning is adopted to integrate with Reinforcement Learning.

Objective Function and The Gradient: The objective

function of RL to optimize policy π, is formulated as maxi-

mization of the cumulative rewards:

E(st,at)∼πθ

[ ∞∑
t=0

H∑
j=1

γr(st, at)
]

(1)

where (st, at) represents state and action among different

samples (with size of H) respectively.

Then the gradient of this objective is given as follows:

∇θE∈(st,at)∼πθ

[ ∞∑
t=0

H∑
j=1

γr(st, at)
]

= E(st,at)∼πθ

[
∇θ log πθ(st, at)Rπθ

(st, at)

] (2)

Then the gradient descent update for policy parameters is

as follows:

θ′ = θ + α
∞∑
t=0

∇ log πθ(st, at)r(st, at) (3)

where α is the step size, this equation is derived from a well-

known RL equation from [17]. Based on the RL formulation,

we integrate a deadline guarantee scheme.

Fig. 5: Deadline Definition for Each Task: the execution slowdown
value is the ratio between real execution time and ideal execution
time

Deadline-Guarantee Reward Function R: For the aim

of deadline guarantee, we propose diverse reward functions

characterized by valuables depicted in Figure 5: the axis in red

depicts the system time tcur; Each task is with its arrival time

T arr
j and execution time T len

j , then we propose the execution

slowdown [18] value of each task QTj (t) as follows:

QTj
(t) =

tcur − T arr
j

T len
j

(4)

Based on this, we formulate the function f(QTj
(t) to judge if

execution slowdown of a task is within the deadline require-

ment:

f(QTj
(t),Υ) =

⎧⎪⎨
⎪⎩
1, if QTj

(t) ≤ Υ

0, otherwise

(5)

Then the objective of RL process is formulated as follows:

max
∑
Tj∼D

[f(QTj
(t),Υ)] (6)

where D is the task sample data set, Υ denotes the deadline

guarantee threshold, according to Service Level Agreement

(SLA) made between cloud user and provider, the execution

slowdown variable of each task shall be bounded. For nomi-
nated tasks:

rTj∈(st,at) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max[0, (QTj
(t)−Υ)T len

j ]Pa + P fuse
a ,

if to be discarded

max[0, (QTj
(t)−Υ)T len

j ]Pa +Bo,

if to be executed

max[0, (QTj (t)−Υ)T len
j ]Pa,

if to be skipped
(7)

where, Pa denotes a constant representing penalty, Υ is

deadline requirement threshold as aforementioned, T arr
j de-

notes task arrival time; For tasks chosen to be discarded,

whose execution slowdown goes beyond hard deadline Qfu
Tj

,

their reward function includes execution slowdown penalty

max[0, (QTj
(t)−Υ)T len

j ]Pa and extra penalty P fuse
a discard

action. For tasks chosen to be executed, whose demands meet

the resource availability while execution slowdown does not

violate hard deadline, their reward function includes execution

slowdown penalty max[0, (QTj
(t)−Υ)T len

j ]Pa and a constant

bonus Bo for successful allocating a task; For tasks to be

skipped, whose demands does not meet resource availability

while execution slowdown does not violate hard deadline, their

reward function includes only execution slowdown penalty

max[0, (QTj
(t)−Υ)T len

j ]Pa. Overall, every time a task gets

executed successfully, it will be removed from nominated

queue while a new task will be added to nominated queue

from waiting queue; The skipped tasks stay in the nominated

queue; The discarded tasks go to the discarded queue.

For tasks in the waiting queue:

rTj∈(st,at) = max[0, (QTj
(t)−Υ)T len

j ]PaQTj
(t)T len

j (8)

Another penalty related to waiting time length is given for

waiting tasks, forcing the learning process to allocate those

tasks faster.
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After we formulate a time-critical RL scheduling frame-

work, we could find that the scheduling policy model it

achieves is learned from the data set D. What if D changes?

What will happen to the scheduling performance? If there will

be a performance deviation, how to decrease it? We will talk

about these problems in the following section.

B. Robust Meta-RL scheduling paradigm

When it comes to dynamics in the data set, in other words,

the learned model needs to expand its feasibility scope, to be

more general and robust to the environment. Based on the

model of cloud platform and Reinforcement Learning-based

scheduling method built as aforementioned, in this section,

we will propose our framework of the algorithm for achieving

a robust scheduling model.

Robustness of Meta-Learning paradigm
Meta-learning aims to learn a more general model instead

of learning a specific one. The robustness of Meta-Learning

comes at the randomization of the training environment, which

is thus the dynamics. The model trained by meta-learning can

effectively exploit and adapt to changes brought incurred by

dynamics faster than re-training the model from scratch. [24].

In a typical Meta-Learning setting, the task distribution Λ
provides the training set and adaption set (new tasks). The

training process is to learn a policy model, denoted as πθ,

characterized by θ. πθ optimizes the objective function while

minimizing learning loss denoted as LD.

In this paper, we introduce the gradient-based meta-learning

into RL, which updates the learning parameter in two steps:

1) Inner layer update: Doing training on the sample drawn

for training Dtr from task distribution D to calculate the

updated θ′ according to the following update function:

θ′ = Φβ(Dtr, θ) (9)

2) Outer layer update: Using the updated θ′ to apply testing

procedure among tasks Dte, which is from the same

data set with Dtr, to update the parameter of the model

when achieving minimal of loss, we will demonstrate

the definition of the loss function in next section.

min
θ,β

ED[L(Dte, θ
′)] (10)

For the inner layer update, we adopt the gradient descent

method to update θ as follows:

Φβ(Dtr, θ) = θ − α∇L(Dtr, θ) (11)

Repeatedly, according to the convergence, after specific times

mutation of environment [26], a general model is achieved.

When a learned model encounters a new data set or a new

environment, it just needs to adapt itself by few times learning

new features.

Moreover, the inner layer learns a specific scheduling model

for a specific data set from a cloud log period. As is known,

all kinds of dynamics exist in resource availability and task

demands. The data trajectories consequently change dynam-

ically, where the outer layer is working on learning across

different data trajectories to achieve more features improving

robustness. As to the inner layer, the learning goal is to

learn the scheduling model, which acts as a scheduler in the

system interacting with task model and cloud platform models.

Therefore, the inner layer’s learning approach has decent

interactive ability while learning for this role. Reinforcement

Learning is ideal for this mission among different learning

approaches as its structure fits the problem set up in this work.

The details of the RL approach’s feasibility and its design will

be introduced in the following subsection.

Meta-Gradient Reinforcement Learning Formulation
In this section, we propose the inner layer RL designed

for scheduling model learning. According to the problem

formulation and models built as aforementioned, the reward

We aim to use a gradient-based meta-learning framework to

upgrade policy learned via RL to be more robust to the envi-

ronment’s dynamics. Those uncertainties influence scheduling

performance and the deadline missing rate.

The RL takes the role of the inner loop of meta-learning

to learn the update from trajectories of data set samples; thus,

we have a more specific version of the equation: 9

θ′ = Φβ(Dtr, θ) = argmax
θ

EAt,St∼π(θ)[

N∑
t=0

γtRt] (12)

where, Dtr is data set sampled from Λ for training; St,At

represents state and action among different samples (with size

of N sampled points) respectively.

Then for the meta testing part, the learned parameter θ′ will

be used to calculate the loss function and do the gradient-based

update:

θ ← θ − α

N∑
j=1

Lj(Dte, θ
′) (13)

C. Robust Meta-RL Scheduling algorithm with Deadline-
Guarantee

In this section, we describe the overall algorithm, merging

all components mentioned in previous sections. As is shown in

algorithm 1, distribution over tasks, learning rates of the outer

and inner loop are required. The first step is the initialization of

the algorithm: setting the initial parameters of the policy model

and reset the data set D. We also set a sliding learning window

with a size of h to improve the algorithm to be a continuous

learning process. From line 2 to line 4 is the sampling step:

based on the number of environments, N data trajectories

are sampled from the distribution Λ according to the current

policy model and added to the data set D. The following inner

layer learning loop from lines 5 to 6 re parallel RL learning

agent, sampling data sets τH inside D. From lines 7 to 9, each

learning agent samples a smaller sliding learning window with

a size of h to calculate updated θ′h based on each loss function.

Unlike conventional RL or other learning methods, the overall

policy model does not get updated by any parallel inner layer

learning agent. After achieving updated θ′h, each RL agent

uses θ′hi
model to sample new data samples τ ′hi

from D. In

line 14, each agent finishes a sliding window learning and
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Algorithm 1 Robust Meta-RL Scheduling algorithm with

Deadline-Guarantee

Require: Distribution over tasks: Λ,

Require: Environment number: N , sliding window size h
Require: Learning rate: α, β ∼ R

+

1: Initialize the policy πθ and D ← ∅

Require: Number of environments: N
2: for i = 1, ...N do
3: Use pre-adapted policies πθ′

H
to sample D′ ∼ Λ

4: Add samples: D ← D′
5: for j = 1, ..., H do
6: Set a sliding door with the size hi ∈ (0, H)
7: for hi do
8: Use policies πθ to sample trajectories

9: within first hi samples τhi ∼ H
10: Use τH to calculate adapted parameters:

11: θ′hi
= θ + α

∑hi

j=1 ∇ log πθ(st, at)rTj (st, at)

12: Use adapted policy πθ′
hi

sample trajectories:

13: τ ′hi
∼ H

14: end for
15: Use τH to calculate adapted parameters:

16: θ′H = θ + α
∑

hi
∇ log πθhi

(st, at)rTj
(st, at)

17: Use adapted policy θ′H sample trajectories τ ′H ∼ D
18: end for
19: Calculate update:

20: θ ← θ − β∇θ
1
H

∑H
j=1 Lj(θ

′
H) using τ ′H

21: end for
22: returnθ updating policy model

then continues to the next sliding window. The learned τ ′hi

are used to calculate θ′H and update τ ′H . From lines, 19 to 20

is the calculation of overall parameter update for scheduling

policy model based on the gradient of θ′H learned by RL agent

from each sliding window within each environment. After each

iteration, the sliding window continues to sample another data

set then the whole algorithm stays continuous learning process.

IV. EXPERIMENT

In this section, we conduct a serial of experiments to

evaluate our approach while comparing it with several other

methods to prove that our approach achieves state-of-the-art

performance.

A. Experimental Settings

Real-world data-sets
Euro-Argo Data Service log: The Euro-Argo research in-

frastructure is the European contribution to the global Argo

program, which currently has more than 3500 autonomous

float instruments globally deployed over the world ocean to

measure and report temperature salinity and other properties

of the oceans. The collected raw data from deployed floats

is processed into scientific research data, critical assets for

conducting environmental and interdisciplinary scientific re-

search. They are then made available via the Euro-Argo data

portal, and research communities can access them from various

methods. To guarantee this, the Euro-Argo infrastructure needs

to allocate sufficient resources to store data, execution of

service requests, and bandwidth for down and uploads. The

Euro-Argo Data Service Log data is collected for one month’s

continuous data services 24 hours per day. There are 14

variables from different data services measured for one month.

There are 43200 samples collected by sampling every 1 minute

from the 4094157 raw log data, including request numbers,

requested transfer time, and requested transfer size.

Synthetic Data
For synthetic data-set in each environment, we assume two

types of resources, i.e., CPU cores and memory, both with

a total capacity of m. Tasks are further classified into two

categories: light and heavy tasks. The duration of light tasks

is uniformly chosen between 1t0 and 3t0, while the duration

of heavy tasks is chosen uniformly from 10t0 to 15t0, t0 is a

one-time step in the system. Each task has a dominant resource

which is picked randomly. The demand for the dominant

resource is selected uniformly between 0.25m and 0.5m, and

the demand for the other resource is between 0.05m and 0.1m.

Finally, we set up the deadline threshold Υ = 3 and the hard

execution slowdown variable to 5.

General environment set up
Parameters

Modes light tasks heavy tasks dominant resource execution slowdown
General 1t0 − 3t0 10t0 − 15t0 0.25m− 0.5m 3x

TABLE II: General Setup: We assume two types of resources, i.e.,
CPU cores and memory, both with a total capacity of m. Tasks
are further classified into two categories: small and big tasks. The
duration of small tasks is uniformly chosen between 1t0 and 3t0,
while the duration of big tasks is chosen uniformly from 10t0 to
15t0, t0 is a one-time step in the system, the execution slowdown is
set to three times of each task length.

Evaluation Metrics

TABLE III: Table of Indicators

Deadline Guarantee Indicators

DRMR � Deadline Requirement Missing Rate

HDMR � Hard Deadline Missing Rate

NAI � Necessary Adaptation Iterations

CSP � Converged Scheduling Performance

CW10000 � Convergence within 1000 times of iterations

Robustness Indicators

SPD � Scheduling Performance Deviation

AIDURP � Adaptation Iteration and Data Usage for Performance
Recovery

Deadline Requirement Missing Rate(DRMR) [52]: total per-

centage of scheduled tasks that violate deadline requirement.

DRVP indicates the level of deadline guarantees for each

method.

Hard Deadline Missing Rate(HDMR) [52]: total percentage

of scheduled tasks that violate hard deadlines. HDVP shows
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several tasks which violate strict limitation of deadline require-

ment.

Necessary Adaptation Iterations(NAI): the iteration needed

for convergence after the influence of dynamics.

Converged Scheduling Performance(CSP): the scheduling

performance after the convergence of retraining, which de-

scribes under newly converged scheduling policies, the portion

of scheduled tasks that meet the deadline requirement:

CSP = 1− [Qconv −Υ]/Υ (14)

Convergence within 1000 times of iterations(CW10000):
wither learning converged within 10000 iterations of adap-

tation in a new environment (yes/no).

Robustness Indicators We adopt the two indicators to com-

pare robustness performance: Scheduling Performance De-

viation(SPD) and Adaptation Iteration and Data Usage for

Performance Recovery(AIDUPR). More specifically, the per-

formance values PERafter and PERbefore are defined as

the average execution slowdown value QTj
(t) of scheduled

tasks before and after environment changes, respectively. Re-

quests and which are according to resource requirements are

adjusted after algorithm convergence to check the deviation

of algorithms and then the recovery and adaptation process of

each approach. Thus the instant performance deviation right

after the influence of dynamic from a workload or resource

availability is one of the criteria, which is formulated as

follows:

SPD =
|PERafter − PERbefore|

PERbefore
(15)

where, PERafter denotes the instant average execution slow-

down value after the influence of dynamic, PERbefore indi-

cates previous converged execution slowdown value .

Besides the instant performance deviation, algorithm con-

vergence speed also reflects the robustness, which shows how

fast the algorithm adapts to dynamics. AIDUPR is proposed

to describe the time needed for iterations and data needed for

training of adaptation after performance deviation incurred by

dynamics:

AIDUPR = SPD ∗ ITER ∗ t (16)

where ITER demonstrates the iteration time, t describes time

spent for each iteration.

Baseline Settings To compare Meta-RL and conventional

RL methods, we pre-train four different RL-based scheduling

methods with the same input data as Meta-RL. The structure

and parameters are shown in Table IV. The pre-training details

follow in the next part.

Platform settings: We implement the experiments on the

hardware platform consists of 18 nodes, each node has: 4

x GTX 1080 Ti, 2 x Intel(R) Xeon(R) Gold 5118 CPU @

2.30GHz (12 cores per cpu), 128 GB memory, 2 x 10 TB

local HDD, 2 x 4 TB local SSD. The software environment

includes: Anaconda, python-numpy, python-scipy, python-dev,

python-pip, python-nose, g++ libopenblas-dev, git, Theano 1.4

version, Lasagne 0.1 version, and python-matplotlib.

Fine-tuned RL Approaches

RL Approaches
Parameters

NN Layers Neuron Number Optimizer ρ Learning Rate Activation Function

RL1 2 20 RMSProp 0.9 0.00001 ReLU, Softmax
RL2 3 30 RMSProp 0.8 0.00001 ReLU, Softmax
RL3 3 40 Adam - 0.00001 ReLU, Softmax
RL4 3 50 RMSProp 0.7 0.00001 ReLU, Softmax

TABLE IV: Fine-tuned RL approaches: we train four different RL
approached as baselines of our proposed Meta-RL. Those four fine-
tuned are with different neuron network structures: different neural
network layers, different number of neurons for each layer, and
different update rules combinations

Before making an adaptation comparison with RL, we apply

our approach, Meta-RL, to obtain a generic policy going

through 30 sets of environments trajectories, each one has

4× 4× 4 kinds of combinations: σTj , dj , Tmax
j with respect

of general set up. New trajectories are fed to the learning

process only after the algorithm reach convergence among

the last trajectories. Then apply the learned model to new

environment training. Thus prior meta-learning includes 1920

continuous environments data sets training. For comparison

Workload Setups
Parameters

Workload modes σTj
dj Tmax

j

Light (0.1,0.3) < 0.3m < 5t0
Medium (0.4,0.5) < 0.5m < 10t0
Heavy (0.5,1) < 0.8m < 15t0

TABLE V: Workload Setups: We assume two types of resources, i.e.,
CPU cores and memory, both with a total capacity of m, t0 is a
one-time step in the system.

with RL, we set up three kinds of environments with respect to

workload:Easy workload: with σTj
∈ (0.1, 0.3), dj < 0.3m,

Tmax
j < 5t0. Medium workload: with σTj

∈ (0.4, 0.5), dj <
0.5m, Tmax

j < 10t0. Heavy workload: with σTj ∈ (0.5, 1),
dj < 0.8m, Tmax

j < 15t0. Each set we sampled 3 × 3 × 3
environments to do compression between Meta-RL and normal

reinforcement learning, and other heuristics approach.

Fig. 6: Distribution of different workload.

B. Experimental Results

As is shown in Table VI, we compare the scheduling

performance of our Meta-RL algorithm with four fine-tuned

RL methods based on the synthetic data. We change the same

portion of the workload for each method in the same workload

644



Workload Light Medium Heavy

Approaches
Indicators

DRMR HDMR DRMR HDMR DRMR HDMR

Meta-RL 1.5±0.5% 1.2±0.7% 2.2±0.6% 2.3±0.4% 5.2±1.1% 3.5±0.9%
RL1 10.1± 2.4% 5.5±3.6% 12.2± 5.3% 8.2± 3.3% 22.9± 6.1% 11.4± 5.2%
RL2 15.2± 4.3% 7.3± 3.1% 21.7± 10.3% 12.3± 5.5% 33.2± 7.9% 17.4± 11.2%
RL3 13.3± 3.1% 10.5± 3.1% 14.7± 5.5% 10.6± 4.6% 15.3± 2.5% 12.5± 3.3%
RL4 13.5± 5.3% 8.2± 2.1% 14.1± 6.4% 7.4±3.3% 16.3± 5.2% 10.2± 4.3%

TABLE VI: Deadline Guarantee Comparison: we compare Meta-RL with four fine-tuned RL approaches in deadline guarantee based on
synthetic data sets, which shows Meta-RL outperform the others in deadline missing rate, offering better deadline guarantee

Approaches

Indicators Workload Modes
Light Medium Heavy

NAI CSP CW10000 NAI CSP CW10000 NAI CSP CW10000
Meta-RL 1210±300 96.13±3.24% � 2677±657 95.22±2.82% � 4366±1211 91.23±5.15% �

RL1 10423± 2145 91.45± 5.21% X 22754± 1203 75.31± 11.46% X 8422± 2102 67.62± 14.71% X
RL2 13473± 1133 85.36± 5.17% X 17621± 3125 76.65.45± 4.81% X 10125± 1014 82.45± 6.33% X
RL3 6623± 765 92.12± 3.36% X 12500± 1423 88.9± 7.53% X 15032± 600 77.8± 5.76% X
RL4 5477± 675 87.25± 7.56% � 9644± 1325 73.23± 9.77% − 9642± 1742 85.67.45± 5.21% −

TABLE VII: Scheduling Adaptation Iteration: we compare Meta-RL with four fine-tuned RL approaches based on data sets from real-world
Argo log data, which shows Meta-RL outperform the others in performance stability and adaptation speed through different workload modes

setup to get the average results of two deadline missing

rates to compare the proposed Meta-RL deadline guarantee

performance. As can be seen, all numbers in bold are the

ones with the best performance; Meta-RL stably offers the

deadline guarantee in each environment, outperforming the

other four fine-tuned RL methods in terms of the deadline

guarantee. Only 3± 1.5% tasks scheduled violate hard execu-

tion slowdown variable 5. In contrast, other tasks scheduled

by RL methods have at least 10% missing rate of deadline

requirement. Moreover, for heavy tasks, shown in Table VI,

our method Meta-RL offers deadline guarantees among under

different workloads. As is shown in Table VII, we implement

adaptation comparison between Meta-RL and other four fine-

tuned RL approaches based on real-world Argo log data-

set. Meta-RL converges with the least iteration times and

with the best-converged scheduling performance. Thus Meta-

RL outperforms the other four fine-tuned RL in performance

stability and adaptation speed.

Fig. 7: Performance deviation Comparison

Fig. 8: Adaptation Speed Comparison

The performance deviation calculated here is right after

the change of the environments; it could demonstrate the

robustness of different approaches. The task requests are from

the log data, with increasing resource demands. As shown

in Figure 7: with the increasing workload, the performance

deviation of Meta-RL remains stable within 50%, for some

range even under 20%. In comparison, RL approaches’ per-

formance decreases starting from more than 50% even beyond

250% with the increased workload. From this, the robustness

of our Meta-RL outperforms the conventional RL approach.

Figure 7 shows the adaptation speed or performance recovery

speed discounted by the performance deviation portion, which

balances the adaptation speed and robustness performance. As

is shown, we cloud see that the adaptation speed of Meta-RL

is more than five times faster than RL averagely after every

time increase of workload, at some point, even more, proving

its robustness to dynamics of the environment.
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V. DISCUSSION

As shown in the previous section, our proposed approach

outperforms the conventional Reinforcement Learning ap-

proach at the robustness and converging speed after changing

workloads. Our approach’s scheduling deviation and adapta-

tion speed change in a similar trend during the increase of

workload. Firstly they both increase within the range of 10%-

30% workload increase then decrease within range of 30%-

50% which shows then increase again. For other fine-tuned RL

methods, their scheduling stability and adaptation speed do not

show accordingly changing trends. Thus when given a 50%

or minor workload increase, our approach could still keep ro-

bustness without lower than 30% performance deviation. The

robustness starts to decrease when workload increase beyond

50% but still with lower than 50% performance deviation,

much lower than fine-tuned RL methods (more than 200%).

We are currently working on expanding the robustness range

where our framework’s framework could keep robustness with

lower performance deviation to improve the overall scheduling

robustness further.

The performance deviation of our Meta-RL approach can

be minimized within -30% to -50%, which is much smaller

than -200% to -1000% observed from conventional RL ap-

proaches. However, there is still room for further improvement,

particularly for reducing the deviation right after the dynamic

workload changes. Furthermore, by adding a sliding learning

window, our framework stays continuous online learning to

adapt to dynamics in the environment. We are currently

profiling performance changes in different workload patterns,

considering changes in workload types, failures among cloud

infrastructures, or pricing models used. Combing those studies

with well-refined online learning strategies will be an impor-

tant future work.

Above all, further improving the robustness of container

cluster scheduling will be the goal in future work.

VI. CONCLUSION

In this work, Meta-RL, a robust task scheduling framework,

is presented to offer deadline-guaranteed scheduling for time-

critical tasks and improve the schedule’s robustness in the

meantime. We propose a meta-gradient robust reinforcement

learning framework to quickly adapt a scheduling policy model

to a newly changed environment while using a deadline critical

scheme to maintain the deadline guarantee. Experimental re-

sults show that our approach can provide the deadline guaran-

tee, which outperforms fine-tuned RL methods. Furthermore,

our Meta-RL approach finishes adaptation in new environ-

ments using fewer training iterations, 200%-500% faster than

the fine-tuned RL approach, achieving better robustness while

offering deadline guarantees.
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