Journal article Open Access

Some Generalized Results to unify Classical Polynomials

MamtaDassani; Mukesh kushwaha


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Classical Polynomials,LegendrePolynomials, Rodrigues Formula , Generating Functions.</subfield>
  </datafield>
  <controlfield tag="005">20210907134823.0</controlfield>
  <controlfield tag="001">5482262</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Mathematical Sciences &amp; Computer Application, Bundelkhand University, Jhansi (U.P), India.</subfield>
    <subfield code="a">Mukesh kushwaha</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication (BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">342613</subfield>
    <subfield code="z">md5:39e5c451603f6168d12d2f515bdd1b48</subfield>
    <subfield code="u">https://zenodo.org/record/5482262/files/B0201033321.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-03-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5482262</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1-5</subfield>
    <subfield code="n">3</subfield>
    <subfield code="p">International Journal of Basic Sciences and Applied Computing (IJBSAC)</subfield>
    <subfield code="v">3</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Basic Science, Bundelkhand University Jhansi(U.P), India.</subfield>
    <subfield code="a">MamtaDassani</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Some Generalized Results to unify Classical Polynomials</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2394-367X</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijbsac.B0201033321</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Present work of this paper deals with the unification of classical polynomials in which we have defined a generalized polynomial set analogous to that of associated Legendre polynomial P (x) m n by taking 5the use of Operator. Also we have derived explicit form, OperationalFormulae generating functions for this function.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2394-367X</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijbsac.B0201.033321</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
15
13
views
downloads
Views 15
Downloads 13
Data volume 4.5 MB
Unique views 15
Unique downloads 13

Share

Cite as