Journal article Open Access
MamtaDassani; Mukesh kushwaha
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Classical Polynomials,LegendrePolynomials, Rodrigues Formula , Generating Functions.</subfield> </datafield> <controlfield tag="005">20210907134823.0</controlfield> <controlfield tag="001">5482262</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Mathematical Sciences & Computer Application, Bundelkhand University, Jhansi (U.P), India.</subfield> <subfield code="a">Mukesh kushwaha</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Publisher</subfield> <subfield code="4">spn</subfield> <subfield code="a">Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">342613</subfield> <subfield code="z">md5:39e5c451603f6168d12d2f515bdd1b48</subfield> <subfield code="u">https://zenodo.org/record/5482262/files/B0201033321.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-03-30</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:5482262</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="c">1-5</subfield> <subfield code="n">3</subfield> <subfield code="p">International Journal of Basic Sciences and Applied Computing (IJBSAC)</subfield> <subfield code="v">3</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Department of Basic Science, Bundelkhand University Jhansi(U.P), India.</subfield> <subfield code="a">MamtaDassani</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Some Generalized Results to unify Classical Polynomials</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="650" ind1="1" ind2=" "> <subfield code="a">ISSN</subfield> <subfield code="0">(issn)2394-367X</subfield> </datafield> <datafield tag="650" ind1="1" ind2=" "> <subfield code="a">Retrieval Number</subfield> <subfield code="0">(handle)100.1/ijbsac.B0201033321</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Present work of this paper deals with the unification of classical polynomials in which we have defined a generalized polynomial set analogous to that of associated Legendre polynomial P (x) m n by taking 5the use of Operator. Also we have derived explicit form, OperationalFormulae generating functions for this function.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">issn</subfield> <subfield code="i">isCitedBy</subfield> <subfield code="a">2394-367X</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.35940/ijbsac.B0201.033321</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
Views | 15 |
Downloads | 13 |
Data volume | 4.5 MB |
Unique views | 15 |
Unique downloads | 13 |