
Trends in large-deformation analysis of landslide mass movements
with particular emphasis on the material point method
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Traditional geotechnical analyses for landslides involve failure prediction (i.e. onset of failure) and the
design of structures that can safely withstand the applied loads. The analyses provide limited
information on the post-failure behaviour. Modern numerical methods are able to simulate large mass
movements and there is an opportunity to utilise such methods to evaluate the risks of catastrophic
damage if a landslide occurs. In this paper, various large-deformation analysis methods are introduced
and their applicability for solving landslide problems is discussed. Since catastrophic landslides often
involve seepage forces, consideration of the coupled behaviour of soil and pore fluid is essential. Two
approaches to model soil–pore fluid coupling in large-deformation analysis using the material point
method (MPM) are introduced. An example simulation is presented for each approach; one on a model
levee failure and the other on a natural cut slope failure (the Selborne experiment conducted by Cooper
and co-workers in 1998). In the levee failure case, MPM simulation was able to capture a complex
failure mechanism including the development of successive shear bands. The simulation was also able
to predict excess pore pressure generation during the failure propagation and the subsequent
consolidation stage. The simulations demonstrated the importance of the dilation characteristics of
soil as well as changes in geometry for the post-failure behaviour. In the Selborne case, MPM was able
to simulate the progressive failure of brittle, overconsolidated clay. The evolution of shear stresses along
the failure surface was also captured by the MPM. The changes in the pore pressure and the actual
shape of the failure surface were simulated by the MPM. The importance of accurately modelling the
shear band within the MPM framework is highlighted.
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INTRODUCTION
In nature, instabilities of slopes can manifest themselves in
dramatic events involving sudden release of a large mass of
soil, causing landslides. Among different types of landslides,
the flow type slides (Hungr et al., 2001) such as sand/clay
flow slides, debris flows and debris/rock avalanches can be
very dangerous due to their rapid velocities and long run-out
distances. The prediction of such catastrophic events presents
several challenges and understanding the mechanics is of
particular importance for risk assessment. Most geotechnical
analyses involve failure prediction (i.e. onset of failure) and
the design of structures that can safely withstand the applied
loads. Although the probability of failure at the initiation
stage of a landslide is often small, it is important to under-
stand the post-failure behaviour so that the risk of cata-
strophic damage can be minimised. Hence there is a need to
develop solution schemes that are capable of simulating fail-
ure initiation as well as post-failure dynamics of landslides.
The dynamics of a landslide involve at least three distinct

scales: (a) the microscopic scale, which is characterised by the
contact between grains; (b) the meso-scale, which represents
microstructural effects such as grain rearrangement; and (c)
the macroscopic scale, in which soil layering, faults and any
other geological/geomorphologic features are important. For
example, the flow of submarine landslides, which can be as
much as 100 000 km3 in volume, is influenced by the grain–

grain interactions and the hydrodynamics happening at the
scale of a few micrometres to millimetres.
Typically continuum laws are only used when there is

a strong separation of scales between the micro-scale and
the macro-scale sizes of the landslide geometry. This paper
provides an overview of continuum-based large-deformation
analysis to simulate post-failure behaviour of landslides.
Although continuum methods are useful in engineering de-
sign and interpretation, the grain level description of the
granular material enriches the macro-scale variables that
happen to account poorly for the local rheology of the
materials. Numerical tools such as the discrete-element
method (DEM) make it possible to evaluate quantities that
are not accessible experimentally, thus providing useful
insight into the flow dynamics. Grain–fluid interactions can
be simulated by interfacing DEMs with a lattice Boltzmann
solver or a computational fluid dynamics solver (He & Luo,
1997a, 1997b; Tsuji et al., 2007; Kumar et al., 2012;
Capecelatro & Desjardins, 2013; Xiong et al., 2014).
However, these methods have their inherent limitations.
Although millions of grains can be simulated, the possible
size of such a grain system is generally too small to regard
as ‘macroscopic’. Therefore, methods to perform a micro–
macro transition are important and these ‘microscopic’
simulations of a small sample, that is, the ‘representative
volume element’, can be used to derive macroscopic theories
that describe the material within the continuum framework.
This is an important research topic in its own right; however,
it is beyond the scope of this paper.
Landslides and failure of slopes are caused by changes

in the effective stresses, variation of material properties
or changes in the geometry. Although the failure of geo-
materials invariably refers to the attainment of a limit state, it
is also possible to have material and spatial instability that

� Department of Engineering, University of Cambridge,
Cambridge, UK.
† Polytechnic University of Catalonia, Barcelona, Spain.

Manuscript received 11 March 2015; revised manuscript accepted
26 August 2015.
Discussion on this paper is welcomed by the editor.

Soga, K. et al. Géotechnique [http://dx.doi.org/10.1680/jgeot.15.LM.005]

1

Downloaded by [ UNIVERSITY OF CAMBRIDGE] on [07/12/15]. Copyright © ICE Publishing, all rights reserved.

https://www.researchgate.net/publication/256744459_An_Euler-Lagrange_strategy_for_simulating_particle-laden_flows?el=1_x_8&enrichId=rgreq-1f7ae8a1f7f496e8c6f392809852211b-XXX&enrichSource=Y292ZXJQYWdlOzI4NDU0NzEyNDtBUzozMTY3MTgwODQyMzExNjhAMTQ1MjUyMjg4MzQ4MA==
https://www.researchgate.net/publication/256744459_An_Euler-Lagrange_strategy_for_simulating_particle-laden_flows?el=1_x_8&enrichId=rgreq-1f7ae8a1f7f496e8c6f392809852211b-XXX&enrichSource=Y292ZXJQYWdlOzI4NDU0NzEyNDtBUzozMTY3MTgwODQyMzExNjhAMTQ1MjUyMjg4MzQ4MA==
https://www.researchgate.net/publication/256744459_An_Euler-Lagrange_strategy_for_simulating_particle-laden_flows?el=1_x_8&enrichId=rgreq-1f7ae8a1f7f496e8c6f392809852211b-XXX&enrichSource=Y292ZXJQYWdlOzI4NDU0NzEyNDtBUzozMTY3MTgwODQyMzExNjhAMTQ1MjUyMjg4MzQ4MA==


result in deformation modes with and without sharp dis-
continuities (Nicot & Darve, 2011). Two material failure
modes are of interest when considering geomaterials: lo-
calised and diffuse failure modes (Darve et al., 2004). At a
material scale, the localised failure mode corresponds to a
transition from a homogeneous strain pattern to a discon-
tinuous one, characterised by the appearance of shear bands
in which strains concentrate (Darve & Laouafa, 2000). On
the contrary, the diffuse failure mode corresponds to a homo-
geneous occurrence of failure (Daouadji et al., 2010). No
visible pattern of localisation exists. A chaotic kinematic field
dominates. Unlike shear bands, diffuse instabilities occur
under fairly homogeneous deformation modes and drained
instabilities are not generated by the excess pore pressures
(Ramos et al., 2012). This type of failure is usually observed
in loose soils on gentle slopes. Further work is required to
identify grain-scale behaviour that initiates a localised or a
diffuse failure mode.

NUMERICALTECHNIQUES FOR MODELLING
LARGE-DEFORMATION PROBLEMS

Table 1 lists various numerical methods available to solve
large soil deformation problems. The basic features along
with possible drawbacks are described for each method.
Selected references are given to provide examples of how each
method is used for landslide problems. It should be noted
that the purpose of the table is not to give an authoritative
view of the numerical techniques for modelling large-
deformation problems (landslides in particular). It is to
provide a point of reference for the readers to study further.

Conventional mesh-based Lagrangian approaches, such as
the finite-element method (FEM) or the finite-difference
method (FDM), are capable of modelling history-dependent
material behaviour and have well-defined free surfaces.
However, they require complex re-meshing and remapping
of variables, causing additional errors in simulating large-
deformation problems (Li & Liu, 2002). Unlike Lagrangian
FEM, the computational mesh in Eulerian FEM is kept
spatially fixed while the material is deforming in time. The
Eulerian description produces the capability for handling
large deformations without the problem of mesh distortion.
As the computational mesh is completely decoupled from
the material, convective terms appearing in the Eulerian
FEM introduce numerical difficulties because of their
non-symmetrical properties (Donea et al., 1982).
Additionally, Eulerian FEM is difficult to use with history-
dependent constitutive models, which are commonly adopted
to represent the mechanical behaviour of soils.

The coupled Eulerian–Lagrangian (CEL) method is an
arbitrary Lagrangian–Eulerian method that attempts to
capture the advantages of both the Lagrangian method
and the Eulerian method in modelling large-deformation
problems in geomechanics (Qiu et al., 2011). For general geo-
technical problems, a Lagrangian mesh is used to discretise
structures, while an Eulerian mesh is used to discretise the
subsoil. The interface between structure and subsoil can be
represented using the boundary of the Lagrangian domain.
On the other hand, the Eulerian mesh, which represents the
soil that may experience large deformations, has no problems
regarding mesh and element distortions. However, this
requires greater computational time.

The element-free Galerkin (EFG) method is a mesh-less
method, in which trial functions for the weak form are
constructed using the moving least-squares interpolation
(Belytschko et al., 1994). The particle finite-element method
(PFEM) is another mesh-less technique in which the nodal
points represent the particles and the computational mesh is
constructed by connecting these points. The mesh is then

used to solve the governing equations in a Lagrangian
fashion, but large deformation requires frequent re-meshing
(Kafaji, 2013).
In the case of flow slides, the run-out distances are up to

two orders of magnitude greater than the length of the source
of the landslide. The finite-element method with Lagrangian
integration points (FEMLIP) is a framework that is based on
FEM analysis with material points travelling through the
finite-element mesh. Moresi et al. (2003) derived the
FEMLIP scheme from the material point method but it is
based on a fast-implicit solution method. It includes various
particle-reweighting steps, which improve accuracy in the
fluid deformation limit. In FEMLIP formulation, the
material points coincide with quadrature, which therefore
move with respect to the mesh. The locations of the
quadrature points are fixed for each element, and it is
necessary to vary the weights in order to obtain the correct
integral for a given element.
Smooth particle hydrodynamics (SPH) is the oldest mesh-

free technique, in which the domain is discretised into par-
ticles that have a spatial distance referred to as the smoothing
length, over which the material properties are ‘smoothed’ by
a kernel function. SPH was developed to solve astrophysical
problems (Monaghan, 2005). SPH has been applied in geo-
mechanics for solving large-deformation problems (Mori,
2008; Augarde & Heaney, 2009; Maeda & Sakai, 2010).
Although SPH has been successfully used in the past, it has a
few drawbacks. SPH exhibits spatial instabilities, because of
the point-wise integration (Bonet & Kulasegaram, 2000).
Insufficient neighbouring particles potentially cause incon-
sistencies, and the boundary treatment is complex. It is com-
putationally expensive as a result of the search for the
neighbouring particles (Bandara, 2013).
The material point method (MPM) (Sulsky et al., 1994,

1995) is a particle-based method that represents the material
as a collection of material points, and Newton’s laws of
motion determine their deformations. Sulsky et al. (1994)
extended the particle-in-cell (PIC) method (Harlow, 1964) to
computational solid mechanics by taking advantage of the
combined Eulerian–Lagrangian approach. The MPM is a
hybrid Eulerian–Lagrangian approach, which uses moving
material points and computational nodes on a background
mesh.
In this paper, the MPM is introduced as the authors’

preferred method for modelling landslide problems. The
main reasons for this are as follows: (a) it can be used with
large-scale failure analysis that undergoes large deformations
since this method is based on continuum description of
material flow using an Eulerian–Lagrangian approach;
(b) the implementation is intuitive for users of FEM; (c) it
can incorporate advanced history-dependent soil constitutive
models; and (d ) its application of boundary conditions is
more straightforward than other mesh-free methods, such
as the SPH method, owing to the presence of the back-
ground grid. Although it can be argued that other mesh-free
methods have similar features, the main aim of the paper is to
show that a mesh-free method is useful in simulating the
complex mechanics of landslide motion during the failure,
propagation and deposition stages.

MATERIAL POINT METHOD (MPM)
General
The MPM is effective particularly in the context of

large-deformation problems (Zhang et al., 2009; Andersen
& Andersen, 2010; Mackenzie-Helnwein et al., 2010; Shin,
2010; Bandara, 2013; Mast et al., 2014). Although not
derived directly from what are classically considered as
mesh-free or mesh-less methods, MPM is still regarded as a
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mesh-free approach, primarily because the initial discretisa-
tion of the material does not involve a polygonal tessellation,
as in the FEM. However, MPM utilises a background mesh
to perform differentiation and integration, and to solve equa-
tions of motion (Steffen et al., 2008). The background mesh
can be of any form, although for computational efficiency a
Cartesian lattice is adopted.
A typical two-dimensional (2D) discretisation of a solid

body is shown in Fig. 1. The grey circles in the figure are
the material points xp, where p represents a material point,
and the computational nodes are the points of intersection
of the grid (denoted as Xi, where i represents a computational
node). MPM involves discretising the domain, Ω, with a set
of material points. The material points are assigned with an
initial value of position, velocity, mass, volume and stress,
denoted as xp, vp, mp, Vp and σp, respectively. Depending
on the material being simulated, additional parameters, such
as pressure, temperature, pore-water pressure, and so on,
are specified at the material points. The material points are
assumed to be within the computational grid, as shown in
Fig. 2. At every time step tk, the MPM computation cycle
involves projecting the data, such as position, mass and
velocity, from the material points to the computational grid
using the standard nodal basis functions, called the shape
functions, derived from the position of the particle with
respect to the grid. Gradient terms are calculated on the
computational grid, and the governing equations, that is, the
equations of motion, are solved with the updated position
and velocity values mapping back to the material points. The
mesh is re-initialised to its original state and the compu-
tational cycle is repeated.
One of the advantages of the MPM is that it can utilise

history-dependent constitutive models. Since landslides may
result in extensive shearing of soils, it is important to select
an appropriate soil model that captures the critical state as
well as the residual state. Furthermore, a user may wish to
change the constitutive model during the course of simu-
lation. For example, if the landslide mass comprises debris
and there exists an established channel of water, it will result
in an increase in water content during the flow (i.e. debris
flow). This type of flow is usually modelled as a laminar
single-phase fluid using Coulomb–Bingham rheology.

The MPM for soil–water coupled problems
The presence of pore water makes prediction of landslide

behaviour a difficult task. During landslide mass movements,
the resulting pore water pressure with different material types
leads to different types of failure and post-failure stages.
In particular, a landslide that involves loose, granular soil
can experience excess pore pressure development and result
in hazardous flow-slides, especially in natural and artificial
cut/fill slopes associated with pyroclastic deposits, in situ
weathered soils, loess deposits, mine tailings and waste
deposits (e.g. Italy, Cascini et al., 2008; the Alpine region,
Mueller & Loew, 2009; China, Xu et al., 2012). Analysis
of these types of landslides requires a fully coupled
hydromechanical framework to capture the initial accelera-
tion phase of the post-failure stage. The change in pore water
pressure by seepage or shear-induced contraction of the soil
will change the shear resistance of the soil, which in turn
can initiate landslides. The subsequent movement is also
influenced by shearing characteristics of the soil and the
development of pore water pressure.
Advanced numerical models based on MPM have been

recently derived to capture the fully coupled dynamic beha-
viour in saturated soils during the failure and the post-failure
stages (Zabala & Alonso, 2011; Abe et al., 2013; Jassim et al.,
2013; Bandara & Soga, 2015). MPM can be used to model

the coupled hydromechanical behaviour during landslide
mass movements if its governing equations are based on
a fully coupled hydromechanical framework with advanced
constitutive laws.
Recent developments in the MPM formulations that

capture the fully coupled behaviour can be categorised into
twomain groups (see Fig. 3): (a) single material point layer to
represent fully saturated soil and (b) two material point layers
to represent fully saturated soil. Table 2 lists some of the
references for each category and discusses their main features.
An explicit time integration scheme has been used in all of
these studies to predict the dynamic response of saturated
soil. However, an implicit time integration scheme has been
adopted by Beuth et al. (2008, 2010) to study large-
deformation analysis using the quasi-static MPM.
In the first category (Fig. 3(a)), each material point

contains information on both the soil and the pore fluid
pressure (this can also be extended to include both air and
water, see Yerro et al. (2015)). In this approach, the solid
skeleton is represented in the Lagrangian formulation using
material coordinates and the water phase is represented in the
Eulerian formulation using the spatial coordinates (mass of
water is not conserved). Most studies on the two-phase for-
mulation neglect the relative acceleration of water with
respect to the solid skeleton and consider the u–p formulation
for the governing equations with the generalised Darcy’s
equation (Zhang et al., 2009; Higo et al., 2010; Zabala &
Alonso, 2011). This approach is required, as the Eulerian
description is used to describe the water phase, which is
limited to compute only the relative velocity of water with
respect to the solid skeleton without storing its true velocity
and updating its location.
Zhang et al. (2013) and Zheng et al. (2013) solved the

momentum balance equation of the soil–water mixture as
well as Darcy’s equation in the background grid nodes in
order to compute the pressure increments at material point
locations using the mass balance equation of water. Zabala &
Alonso (2011) obtained solutions for the solid acceleration
and the pressure increment at the background grid nodes and
computed the Darcy’s velocity at the material point locations.
In contrast, Jassim et al. (2013) considered the velocity
formulation (i.e. u–U formulation) and solved for solid and
water accelerations at the grid nodes while using a single
material point to carry both solid and water velocities. Higo
et al. (2010) adopted a different approach in which they
coupled the MPM with the FDM in order to separate the
calculation of pore water pressures using a continuity equa-
tion at background cell centres by the FDM. Higo et al.
(2010) extended the above approach to model unsaturated
soil behaviour using a coupled MPM–FDM approach. Yerro
et al. (2015) recently extended the single layer MPM ap-
proach to model unsaturated soils. It uses a three-phase
approach that considers the mechanical behaviour of a solid
skeleton and flow behaviour of water and air. This method
was then applied to simulate the instability behaviour of a
slope subjected to rainfall infiltration.
When a single layer of Lagrangian material points is

considered, it only conserves the mass of the solid skeleton
and does not guarantee the mass conservation of water. Also,
most previous studies do not consider the relative accelera-
tion of water with respect to the solid skeleton. Hence, it may
not be suitable for application in high-frequency problems
that involve rapid deformations.
In the second category (Fig. 3(b)), the coupled MPM

formulations utilise two sets of Lagrangian material point
layers to consider solid andwater layers. The formulation has
the advantage of conserving both solid mass and water mass.
Shin (2010) and Mackenzie-Helnwein et al. (2010) used this
approach to model solid–fluid mixtures with the MPM,
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Table 1. A summary of numerical methods to simulate landslide problems

Methods Examples/references Description

Continuum approaches

Mesh-based approaches
Finite-element method (FEM) Cascini et al. (2013) used a hydro-mechanical FEM analysis to study the failure

scenarios of a loose slope subjected to vertical downward water seepage.
Eichenberger et al. (2013) numerically modelled the onset of failure of a

rainfall-induced landslide in a steep slope composed of silty sand deposits using a
fully coupled FE analysis with the ACMEG soil model.

François et al. (2007) modelled large slope movements under unsaturated conditions
by combining a hydrogeological model with a geomechanics model (pressure field
calculated from the former model were used as input for the latter).

Some more examples of application of FEM for landslide analysis include Sanavia
(2009) and Cascini & Cuomo (2010).

FEM involves discretisation of the mathematical model into disjoint (non-overlapping) components
of simple geometry called finite elements.

The response of each element is expressed in terms of a finite number of degrees of freedom
characterised as the value of an unknown function, or functions, at a set of nodal points.

Advantages

• A hydromechanical FE analysis allows prediction of failure behaviour due to changes in fluid flow
conditions.

Drawbacks

• Mesh distortion in large-deformation problems.
• Complex re-meshing and remapping of variables cause additional errors in simulating

large-deformation problems.
• Not effective for post-failure behaviour.

Finite-difference method (FDM) Guglielmi & Cappa (2010) studied the gravitational movements of shallow rock over
time using a three-dimensional finite-difference model generated from the regional
digital elevation model. An element size of 50 m was adopted.

Jiang et al. (2010) used the finite-difference technique to model large deformation
failure due to draw-down of the Three Gorges reservoir in China. The Mohr–
Coulomb model with matric suction was used to simulate unsaturated soil. The
fluid–solid coupling is achieved by performing seepage calculation using porous
media, while the mechanical soil skeleton is modelled using the Mohr–Coulomb
criterion.

Some more examples of use of finite difference in modelling landslides and debris
flows include Chemenda et al. (2009); Shrestha et al. (2011); Lenti & Martino
(2013); and Rodriguez et al. (2013).

Derivatives in the partial differential equation are approximated by linear combinations of function
values at the grid points. The domain is partitioned in space and in time and approximations of the
solution are computed at the space or time points.

Applications

• Capable of simulating large deformation problems by updating the coordinates of the grid, but is
restricted by the constitutive formulation.

• Used for analysing simple geometries.

Drawbacks

• Restricted to prismatic elements in the mesh. Modelling complex geometries is difficult.
• Mesh distortion causes issues in large deformation problems.
• Requires greater computational time.
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Table 1 Continued

Methods Examples/references Description

Arbitary Lagrangian Eulerian
(ALE)

Di et al. (2007) used the operator-split ALE technique to study the seismic response of
a saturated slope using a non-linear elastoplastic model. The operator-split ALE
involves two stages: (a) Lagrangian step, where the governing equations for the
saturated soil, the equilibrium equation and the continuity equation are solved by
the traditional, updated Lagrangian method, and (b) the Eulerian step, which
involves mesh smoothing and transfer of state variables.

Many researchers have applied the ALE technique to solve geotechnical problems,
which involve large deformations, such as a rough footing on an undrained soil
layer (Nazem et al., 2009), consolidation problem (Nazem et al., 2008) and soil–
pipeline interactions (Fredj & Dinovitzer, 2010). Kardani et al. (2011) implemented
a refined h-adaptive finite-element technique in ALE to improve the numerical
accuracy by continuously refining the mesh in the zone of concern.

Detailed description of ALE can be found in Donea et al. (2004).

ALE combines the best features of both the Lagrangian and the Eulerian approaches. In the ALE
description, the nodes of the computational mesh may be moved with the continuum in normal
Lagrangian fashion, or be held fixed in an Eulerian manner, or be moved in some arbitrary
specified way to give a continuous rezoning capability. The mesh follows the boundary.

Advantages

• ALE offers freedom in moving the computational mesh, which allows for greater distortions of the
continuum than would be allowed by a purely Lagrangian method, and with more resolution than
that offered by a purely Eulerian approach.

Drawbacks

• The freedom in mesh movement has its limits and mesh tangling is still observed for large
deformation problems.

• Necessity of a convective step to displace nodes based on the contact algorithm. The convective
effect has to be taken in to account for history-dependent variables.

• Although pure Lagrangian boundary conditions avoid the convective algorithm, this method results
in mesh distortion and non-convexity in the global mesh.

Coupled Eulerian – Lagrangian
(CEL)

Qiu et al. (2011) used the CEL method to capture the behaviour of strip footing on a
Drucker–Prager elasto-plastic model and a pile-jacking problem. The Eulerian soil
material is tracked as it flows through the mesh by computing its Eulerian volume
fraction (EVF). Each Eulerian element is designated a percentage, which represents
the portion of that element filled with soil. If an Eulerian element is completely
filled with soil, its EVF is 1; if there is no soil in the element, its EVF is 0. Contact
between Eulerian materials and Lagrangian materials is enforced using a general
contact that is based on a penalty contact method. The Lagrangian elements can
move through the Eulerian mesh without resistance until they encounter an
Eulerian element filled with material (EVF. 0).

Brown et al. (2002) present different contact algorithms that have been proposed to
model the interaction between the Eulerian and the Lagrangian materials.

Guilkey et al. (2003) and Harman et al. (2003) used CEL for large-deformation fluid–
structure interaction problems.

The CEL method also attempts to capture the strengths of the Lagrangian and Eulerian methods. In
general, a Lagrangian frame is used to discretise the moving structure while an Eulerian frame is
used to discretise the fluid domain. The boundary of the Lagrangian domain is taken to represent
the interface between the different domains. Interface models use the velocity of the Lagrangian
boundary as a kinematic constraint in the Eulerian calculation and the stress from the Eulerian cell
to calculate the resulting surface stress on the Lagrangian domain.

Advantages

• Effective for modelling fluid–solid interactions.

The free deformable soil in an Eulerian domain overcomes the impacts of the singular plasticity points
near the interfaces automatically.

Drawbacks

• Requires additional advection terms to handle the transport of quantities related to the mesh.
• Requires greater computational time.
• Numerical solution depends on the coarseness of the Eulerian mesh.
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Table 1 Continued

Methods Examples/references Description

Mesh-free techniques
Material point method (MPM) Jassim et al. (2013) applied the MPM to solve quasi-static problems such as pile

driving. Zabala & Alonso (2011) studied the progressive failure of a dam using a
strain-softening elasto-plastic model in MPM. Beuth et al. (2008, 2010) used an
implicit time integration scheme to study large-deformation problems using
quasi-static MPM.

MPM is extended to solve coupled hydromechanical problems of fluid-saturated soil
subjected to large deformation using Biot’s mixture theory. Separate material points
for the fluid are used to simulate the seepage of water through the porous soil
skeleton (Abe et al., 2013; Bandara & Soga, 2015).

Higo et al. (2010) used coupled MPM with FDM to study seepage response of
saturated and partially saturated soils. Governing equations for the soil skeleton
and the pore fluid are discretised by the MPM and FDM, respectively.

A hybrid Eulerian–Lagrangian approach, which uses moving material points and computational
nodes on a background mesh. The body is represented as a collection of material points, and
Newton’s laws of motion determine their deformations.

Advantages

• Ability to simulate large-deformation problems without mesh distortion problems.
• Simulate fluid–solid interactions in large-deformation problems.

Drawbacks

• Use of linear shape functions in large-deformation problems causes numerical errors due to material
points crossing grids called the cell crossing noise.

• Higher dimensional shape functions require greater computational time.
• Computational cost is higher than FEM.

Smooth particle hydrodynamics
(SPH)

Blanc & Pastor (2012) proposed a stabilised fractional step, Runge–Kutta Taylor SPH
algorithm to model coupled behaviour in saturated soil that can avoid instabilities
and oscillations of pore pressure in general SPH coupled formulations.

Mori (2008) applied two-phase SPH to river levee failure analysis. Maeda & Sakai
(2010) represented the solid phase, liquid phase and the gas phase as separate layers
of SPH particles to simulate seepage-induced failures around sheet piles and dykes.

Bui et al. (2008) performed collapse of a granular column and bearing capacity failure
problem using SPH with an elasto-plastic model.

Further examples of application of SPH to landslide modelling include Basu et al.
(2011); Cascini et al. (2014); Pastor et al. (2009, 2014).

The domain is discretised into particles that have a spatial distance, called the smoothing length, over
which the material properties are ‘smoothed’ by a kernel function.

Applications

• Simulation of large-deformation problems.
• Modelling fluid flow in large-deformation problems.

Drawbacks

• Requires special boundary treatment approaches, such as use of ghost nodes.
• SPH exhibits spatial instabilities, as a consequence of the pointwise integration.
• Insufficient neighbouring particles cause inconsistencies.
• Computationally expensive as a result of the search for the neighbouring particles.
• Suffers from tensile instability, which causes numerical fracture.

Particle finite-element method
(PFEM)

Oñate et al. (2008) simulated surface erosion using PFEM by detaching elements
belonging to the bed surface in terms of the frictional work at the surface originated
by the shear stresses in the fluid.

Zhang et al. (2015) employed two-dimensional plane-strain PFEM simulation to
study whole procedure of the landslide, from initiation, sliding to deposition.

Some more examples of use of PFEM in debris flows and landslide modelling include
Zhang et al. (2015), Cremonesi & Perego (2013) and Oñate et al. (2011).

The PFEM is a numerical method that uses a finite-element mesh to discretise the physical domain
and to integrate the differential governing equations. The nodes of the mesh move according to the
equations of motion in an updated Lagrangian fashion. The nodes transport their momentum
together with all their physical properties, thus behaving as particles. At the end of each time step
the mesh has to be rebuilt as the nodes have been moved to their new time step position. The
Delaunay Tessellation is chosen to connect all the particles at the new time step position giving as a
result a new mesh. The resulting mesh not only works as a support where the differential equations
are integrated, it is also used to identify the contacts and to track the free surface.

Applications

• Large deformation problem with fluid–solid coupling.
• Static and dynamic excavation problems.
• Modelling free-surface evolution.

Drawbacks

• Contact between solid–solid nodes and solid–fluid nodes require special treatment.
• Large deformation requires frequent re-meshing.

Continued
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Table 1 Continued

Methods Examples/references Description

Finite-element method with
Lagrangian integration points
(FEMLIP)

Moresi et al. (2003) derived the FEMLIP scheme from the MPM, but it differs in a
number of important aspects, including the fact that it is based on a fast-implicit
solution method, and that it includes various particle-reweighting steps, which
improve accuracy in the fluid-deformation limit.

Cuomo et al. (2013) adopted the FEMLIP technique with an elastic–perfectly plastic
material to model the effect of a vertical cut excavation in a soil deposit.

Prime et al. (2014) use an elasto-plastic relation and a Bingham viscous law linked by
a mechanical transition criterion to model landslides in the FEMLIP framework.
A parametric study is performed to understand the influence of plastic and viscous
parameters on the flow development and arrest.

FEMLIP is based on a kinematic dissociation between the material points and the computational
nodes of the finite-element Eulerian mesh. For a given material configuration, the material points
are used as integration points on one element. All material properties including the internal
variables are stored at the material points and are accurately tracked during the advection process.

Advantages

• Ability to simulate extremely large deformation without significant change in accuracy; the ability
to track material history and interfaces through time.

• Faster computational algorithm.

Drawbacks

• Large material strains produce elongated ‘local volumes’ for particles. In order to maintain the
representative volume of each particle, new particles are created. This results in a very high storage
requirement.

• The resolution is related to the grid point spacing, not the finer particle spacing.

Element-free Galerkin (EFG) Kumar et al. (2008) used the EFG method to model unsaturated flow through a rigid
porous medium with applications in contaminant transport modelling. They show
that a higher degree of accuracy is available using this method as compared to
conventional FE for similar number of degrees of freedom.

Kim & Inoue (2007) modelled 2D seepage flow through porous media using the basic
EFG method with the addition of stochastic to model variable permeability in
heterogeneous ground.

The EFG (Lu et al., 1994) can be described in a similar fashion to FEMs using shape functions. For
EFG, the shape functions are derived from a moving least-squares approach. Each node has a zone
of ‘influence’, which is usually radially symmetric (in two dimensions, for instance). Typical weight
functions used are truncated splines and exponentials, which are smooth and continuous. The weak
form is local to each node. The test functions used are often the weight functions with a different
radius of support. As long as all the local sub-domains overlap to cover the global domain, the
global equilibrium and boundary conditions will be satisfied.

Advantages

• The dependent variable and its gradient are continuous in the entire domain.

Drawbacks

• Greater computational time.
• EFG is not a true mesh-less method as the global integration requires the division of the domain into

cells, which can be considered similar to the generation of a mesh.
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which was derived based on the mixture theory approach.
They considered the momentum balance equation for each
phase along with drag interaction models to solve the accel-
eration of each phase in the Eulerian formulation. This
approach requires drag interaction models to capture the
interaction between phases through drag forces that occur
due to the relative motion of the phases. This formulation is
quite different from the soil mechanics based MPM for-
mulations – it does not consider the mixture to be composed
of a solid skeleton layer and seepage water layer.

Abe et al. (2013), Bandara (2013) and Bandara & Soga
(2015) used the MPM to model saturated soil with a solid
skeleton and pore water material point layers while using the
effective stress approach to capture the solid skeleton behav-
iour. Abe et al. (2013) considered the Biot’s mixture theory
formulation while neglecting the relative acceleration of
water with respect to the solid skeleton. This requires the
velocity of the water phase to be computed at each time step
using the generalised Darcy’s equation, which may lead to
limitations in modelling rapid motions. Bandara (2013) and
Bandara & Soga (2015) derived a coupled MPM formulation
based on the mixture theory approach considering the rela-
tive acceleration of water with respect to the solid skeleton.
Fig. 3(b) shows a schematic diagram of the MPM approach
with two sets of material point layers adopted by Bandara &
Soga (2015). This method allows modelling of extremely
rapid flows while also conserving the mass of both solid skel-
eton and pore water. Use of two material point layers is
extremely helpful when modelling soil–water interaction
problems such as submarine landslides, dredging and erosion
modelling. For instance, it allows modelling of fluidisation
of soil particles at the water interface and simulations of
internal erosion by transferring a portion of soil particle
mass to fluid particle. However, the existence of two layers
of material points results in greater computation time, and
careful modelling of interface regions that separate saturated
soil from dry soil and free water is required.

A MODEL LEVEE FAILURE BY SOIL–WATER
TWO-PHASE USING TWO-LAYER MPM

This section shows the applicability of MPM to model
fully coupled dynamic problems that undergo large defor-
mations in saturated soils using the mixture theory based
formulation. As discussed earlier, the formulation considers
two sets of Lagrangian material points to represent soil skel-
eton and pore water layers. Further details of the formulation
can be found in Bandara & Soga (2015).

A scenario of levee failure due to increased seepage
is considered in order to show the capability of the MPM
approach. This levee failure model closely resembles a
large-scale experimental investigation on river levee failure,
which was carried out by Iseno et al. (2004) and discussed in
Abe et al. (2013) and Bandara (2013).

Levee model
The experimental procedure of the levee model involved

inducing a seepage flow into an initially unsaturated river
levee. A static water pressure was applied at the back of the
model using a large water tank (Iseno et al., 2004). The
experimental configuration is shown in Fig. 4. The levee was
composed of very loose, sandy soil with average degree of
compaction of 75%, initial water content of 19·4%, initial
saturation of 60% and permeability of 4·5� 10�5 m/s. The
water level at the upstream side of the model was raised to
induce seepage failure. During the seepage flow, the levee
remained stable for 13 h and 10 min, except for a small
failure that took place 1·5 m from the toe of the model after
12 h and 30 min due to internal erosion. A complete pro-
gressive failure occurred afterwards for a duration of 30 s.
The initial configuration for the numerical model is shown
in Fig. 4(c), in which the phreatic surface just before the
failure was considered to avoid long computational time. Just
before the failure, the measured suction and saturation values
slightly above the phreatic line were 2·7 kPa and 82%,
respectively. These values were used as the initial conditions
for the simulations.

The MPM model
As shown in Fig. 4(c), the region below the phreatic line

contains two sets of material points to represent soil skeleton
layer and pore water, and the region above the phreatic line
contains only one material point layer that represents the soil
skeleton. The unsaturated soil behaviour above the phreatic
surface is modelled using a simple approach based on

(1) Particle to node (2) Nodal solution

(4) Update particles (3) Node to particle

Fig. 2. Illustration of the MPM algorithm. (1) A representation of
material points overlaid on a computational grid. Arrows represent
material point state vectors (mass, volume, velocity, and so on) being
projected to the nodes of the computational grid. (2) The equations of
motion are solved on to the nodes, resulting in updated nodal velocities
and positions. (3) The updated nodal kinematics is interpolated back
to the material points. (4) The state of the material points is updated,
and the computational grid is reset

Ω

xp

Xi

Fig. 1. Typical discretisation of a domain in MPM
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Bishop’s effective stress concept by considering: (a) increased
mass due to water for a saturation of 82%; (b) an additional
suction component of Swsm is added when solving the
momentum balance equation of the mixture (Sw is the
saturation ratio, s is the suction and m is the Kronecker delta
vector); and (c) capillary cohesion c′u,mob in addition to c′ are
used to model the effect of suction-induced hardening. Sw, s
and c′u,mob values of a solid material point are automatically
set to zero when the background cell is occupied with awater
material point. The initial values for the effective stress and
the pore water pressure are computed from a preliminary
static solution considering the initial configuration shown in
Fig. 4(c). The numerical model contains 7200 soil material
points and 4974 water material points initially distributed in
a background grid of four material points per cell with 0·1 m
cell length. The simulations were performed with a time step
of 1·0� 10�5 m/s. The bottom boundary is modelled using
Coulomb’s friction criterion (Bandara & Soga, 2015) con-
sidering a friction coefficient of 0·3. Bandara (2013)
performed three simulations with different friction coeffi-
cients (0·2, 0·3 and 0·6) and found out that the failure
behaviour becomes significantly different only when using a
very small friction coefficient (i.e. 0·2).

Constitutive model
A non-associated Mohr–Coulomb model with simple

strain-hardening/softening behaviour is adopted to capture

the effective stress behaviour of the solid skeleton. The
mobilised values of effective friction angle ϕ′, effective
cohesion c′ and dilation angle Ψ are obtained according to
the value of total plastic deviatoric strain, as shown in Fig. 5.
γpeakdev; pl represents the plastic deviatoric strain at peak, and
γcritdev; pl represents the plastic deviatoric strain when the
softening or hardening is completed. The soil is modelled
considering Young’s modulus E¼ 1·0� 107 Pa, Poisson ratio
ν¼ 0·3, solid grain density ρs¼ 2700 kg/m3, initial porosity
η0¼ 0·46, initial permeability k0¼ 5·0� 10�4 m/s and effec-
tive cohesion c′¼ 0 Pa. Three numerical simulations were
performed considering three different peak dilation angles
ψpeak¼ 0°, �1·0° and 5·0° when the total plastic deviatoric
strain γdev,pl was less than γpeakdev; pl of 0·01. These values change
linearly with increasing γdev,pl and reach the critical state
dilation angle of ψcrit¼ 0 when γdev,pl is equal to γcritdev; pl ¼ 0·2.
All the simulations considered the peak value of capillary
cohesion as 0·5 kPa, a capillary cohesion at critical state of
0 kPa, a peak friction angle of 30·8° and a critical state
friction angle of 30·8°. Water was modelled with a density of
1000 kg/m3 and a bulk modulus of 1·0 GPa. These three
simulations were selected to identify the capabilities of the
MPM formulation and to understand the importance of the
dilation characteristics of soil. However, the authors do not
intend to capture the exact soil constitutive behaviour related
to very loose sandy soil that was used in the experiment
because of the limitations of the simple constitutive model
adopted in the present study. The selection of an appropriate

Reference configuration
(t = t0)

Current configuration
(t = t k)

Reference configuration
(t = t0)

Current configuration
(t = t k)

y y

yy

xx

vs

vs
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Solid skeleton material point
– constant solid mass, varying water mass
– carry effective stress, strain, pore pressure

Solid skeleton
material point
– constant mass
– carry effective
   stress, strain

Water material
point
– constant mass
– carry pore pressure

Solid–water mixture
– solves governing equations
   to obtain true velocity of solid
   and Darcy velocity of water

Solid–water mixture
– solves governing equations
   to obtain true velocities of
   solid and water phases

(a)

(b)

Fig. 3. Schematic diagram of the computational grid and material points for the coupled MPM with: (a) single layer of material points; (b) two
layers of material points
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constitutive model is the key to having successful simulations.
Further work is needed to understand the contribution of the
constitutive model on the overall behaviour of a landslide.

Results
Figure 6 shows the contour plots of deviatoric shear strain,

pore pressure and vertical effective stress for the simulations
with three different dilation angles at peak after a time of
2·5 s. Different failure patterns can be identified from each
simulation as a result of having different mobilised dilation
angles during failure. The case with negative ψpeak results in
very large deformations due to high excess pore pressure
development upon shearing and higher reductions in vertical
effective stress compared to the case with zero ψpeak. On the
other hand, the case with positive ψpeak shows only minor
variations of pore water pressure and vertical effective stress,
and the levee remains stable during the entire simulation
except for a small localised failure at the toe area due to
seepage flow.

Figure 7 shows some photographs that were taken during
the experiment and it can be seen that the failure started from
the toe and the levee failed in a progressive manner. Tensile-
like cracking along the surface of the model is visible

throughout the failure. The final shape of the levee after
the failure predicted by the zero dilation case is in good
agreement with the experiment shown in Fig. 6(a). The
differences in the failure behaviour in the simulation can be
the result of: (a) not modelling the unsaturated soil behaviour
above the phreatic surface accurately; (b) not modelling the
entire seepage water front movement; and (c) not being able
to capture the soil strength parameters that are dependent on
density and mean pressure.
A large-deformation failure mechanism can be observed

when using a negative ψpeak that depicts a light contractile
soil as shown in Fig. 6(b). A detailed failure description is
shown in Fig. 8, which includes deviatoric shear strain, pore
pressure and vertical effective stress profiles at different times
during the failure. According to Fig. 8(a), a progressive type
of failure can be observed as more shear bands develop with
time and spread towards the levee. High excess pore pressures
can be observed, especially in the regions of shear bands.
At the same time, the effective vertical stresses also keep
on reducing with time due to change in geometry. Once
the deformations cease, the excess pore pressure dissipates
and the vertical effective stress increases. The size of the shear
band obtained from the adopted formulation can be depe-
ndent on the space discretisation because the present

Table 2. Modelling of soil–pore water coupling using MPM

Single material point layer to
represent fully saturated soil

Zhang et al. (2009) Developed to predict the dynamic responses of saturated soil subject
to contact/impact, based on the u–p form governing equations.
Fluid acceleration with respect to the soil skeleton (aws) is
neglected

Zabala & Alonso (2011) Coupled MPM formulation based on extended Biot’s approach
(Zienkiewicz et al., 1984) while neglecting aws, is used to simulate
the construction and failure of the Aznalcollar dam. The
brittle foundation clay is modelled as a strain-softening
Mohr–Coulomb elasto-plastic model

Jassim et al. (2013) Coupled dynamic, two-phase MPM formulation by way of velocity
formulation (i.e. consider both solid and fluid phase
accelerations) with a single layer of material points. Applied to
model the effect of wave attack on a sea dyke

Zheng et al. (2013) Same governing equations as in Zhang et al. (2009) but with
improved convected particle domain interpolation method that
reduces the numerical artefact noises due to material points
crossing computational grid boundaries

Higo et al. (2010) Simple coupledMPM–FDM approach to model fluid saturated soil
with elasto-plastic material model. MPM method is used to
represent soil particles and the fluid is represented using an
Eulerian approach with FDM

Single material point layer to
represent unsaturated soil

Higo et al. (2015) Simple coupled generalised interpolation material point (GIMP)–
FDM to model partially saturated soil with elasto-plastic
material model considering constant air pressure. GIMP method
is used to represent soil particles and the fluid is represented using
an Eulerian approach with FDM. Applied to model the dynamic
deformation behaviour of unsaturated embankment due to
seepage flow

Yerro et al. (2015) Coupled MPM approach to model partially saturated soil using
three phases (i.e. solid, water, air). A suction-dependent
elasto-plastic Mohr–Coulomb model, expressed in terms of net
stress and suction variables, is implemented. This formulation is
used to model the instability of a slope subjected to rain
infiltration

Two material point layers to
represent fully saturated soil

Mackenzie-Helnwein et al. (2010)
and Shin (2010)

Modelled solid–fluid mixtures using MPM by representing solid
(i.e. not as a solid skeleton as in soil mechanics) and fluid particles
as Lagrangian particles using mixture theory approach

Abe et al. (2013) Modelled coupled hydromechanical problems in saturated soil
using two layers of Lagrangian material points to represent solid
skeleton layer and pore fluid layer based on Biot’s mixture theory
neglecting aws

Bandara (2013) and Bandara &
Soga (2015)

Modelled rapid failure behaviour in fully saturated soils based on
mixture theory approach while using two sets of Lagrangian
material point layers to represent solid skeleton and pore water
while taking into account aws
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formulation does not consider any regularisation technique
to limit the mesh-dependent strain localisation.

Progressive failure
Different failure mechanisms can be observed for the

levees between two cases with zero and negative dilation
angle at peak as shown in Figs 9(a) and 9(b). The levee
with zero dilation angle fails in a progressive failure pattern
with one major shear band as shown in Fig. 9(a). However,
for the case with ψpeak¼� 1·0°, a retrogressive type of failure
pattern is visible due to successive development of shear
bands during the failure and propagation. Primary shear
bands are shown in Fig. 9(b). This behaviour can be further
observed from Figs 8 and 9(c). According to Fig. 9(c), first
the initial shear band develops from location P3 towards P5,
and then successive shear bands are generated (deviatoric
shear strain at point P2 increases after the failure of points
P3, P4 and P5).
Figure 10 shows the motion paths of selected material

points during the entire simulation time for the zero dilation
case (Fig. 10(a)) and the negative dilation case (Fig. 10(b)).
The levee with negative ψpeak results in significant run-out
distance. Fig. 11 shows a detailed comparison of velocity,
displacement and total deviatoric shear strains at material
points C1, C2, C3 and C4. The material points that are lo-
cated above the initial shear band undergo very large

displacements (see points C3 and C4). Most of the material
points in this region tend to slide above the shearing material
under relatively small shearing (see point C3 and Fig. 8(a)).
Relatively higher velocity can be observed for sliding material
than for material that is located in the primary shear bands
(see point C3).

Behaviour at material points
A detailed comparison between the simulations with zero

and the negative ψpeak cases is shown in Fig. 12 considering
the evolution of pore pressure, vertical effective stress and
velocity at three different material point locations (i.e. P3 is
located in the initial shear band in both simulations, P2 is
located in a consecutive shear band in the simulation with the
negative ψpeak, and P1 is located in a position that does not
undergo any shear deformations). The velocity plot with the
negative ψpeak case also contains the evolution of mobilised
dilation angle for P1, P2 and P3.
In the case with negative ψpeak (see Fig. 12(b)), when the

initial shear band develops at P3, the pore pressure rises
significantly (more than twice the initial pore pressure) due to
the contractive tendency of the soil upon shearing. During
this time the vertical effective stress also reduces by more
than twice the initial value. The velocity increases rapidly
(due to a sudden acceleration phase of soil). At P2, the peak
pore pressure and minimum vertical effective stress occur
after some delay as a result of the subsequent development of
shear bands. The instability is a direct result of the presence
of negative mobilised dilation angle at these points just before
the rapid failure. The negative mobilised dilation angle along
the shear bands creates a tendency for the solid skeleton to
contract along the shearing regions. However, the rapidmove-
ment of the soil body causes the soil to be in the undrained
condition, thus generating very high excess pore water
pressures and reducing the effective stresses. The reduction
in the mean effective stresses close to zero can result in
instabilities in the soil, which is quite similar to the case of
static liquefaction and instability in loose, granular soils that
tend to contract upon shearing.
In the case with zero ψpeak (see Fig. 12(a)), there is a more

uniform change in the pore pressure and vertical effective
stresses with time. The slight reductions in pore pressure are
associated with the reduction of the water table height,
and the changes in the vertical effective stress are due to the
geometric changes in the height of the overburden.
The stress path p′–q of a material point that is located

at the initial shear band is shown for each levee with
ψpeak¼� 1·0° and ψpeak¼ 0° cases in Figs 13(a) and 13(b).
Each figure contains a time history of p′ and q values

Rainfall

0·7 m

3·0 m

9·0 m

6·0 m

2·3 m

0·5 m

Sandy soil

Volcanic ash clay

(a)

3·0 m 6·0 m

0·7 m

2·3 m

9·0 m
3·0 m

1·2 m

Solid skeleton material points

Water material points

Water inflow
boundary

Impermeable boundary

Zero pore pressure boundary

(c)

(b)

Fig. 4. Experimental and MPM model set-ups: (a) schematic
diagram of the experimental configuration; (b) front view of the
initial experimental set-up (Mori, 2008); (c) schematic diagram of the
MPM model

αmob( = φ'mob, ψmob, c'u,mob)

α peak

α crit

γ peak
dev,pl γ crit

dev,pl

γdev,pl

Fig. 5. Variation of mobilised friction angle, dilation angle and
cohesion with plastic deviatoric shear strain for the Mohr–Coulomb
model (Bandara, 2013)
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(A, B, C, D, E points are located at times 0 s, 0·25 s, 0·5 s,
1·25 s and 3·5 s). p′–q space is calculated using effec-
tive mean stress p′¼ (σ′1þ σ′2þ σ′3)/3 and deviatoric stress

q ¼ 1=
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ′1 � σ′2Þ2 þ ðσ′2 � σ′3Þ2 þ ðσ′3 � σ′4Þ2

q
and nota-

tions TC and TE in Fig. 13 show the failure envelopes for
triaxial compression and extension, respectively.

In the negative ψpeak case (Fig. 13(a)), the stress path at
material point P3 (or C2) results in significant reduction in
mean effective stress value during the initial shear band
formulation (until 0·5 s) when there are higher excess pore
water pressures. Once the excess pore pressure starts to
dissipate after 0·5 s, the mean effective stress increases and
finally reaches a magnitude larger than the initial values.
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Fig. 7. Progressive failure evolution for the levee failure experiment with rainfall (Mori, 2008): (a) initial failure at toe; (b) initial stage of
progressive failure; (c) intermediate stage of progressive failure; and (d) final failure profile of the levee
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This is due to the fact that the final location of the material
point is different from the initial location and it has a higher
height of overburden. In the zero dilation case (Fig. 13(b)),
both p′ and q values gradually increase to the final values
since the levee undergoes a smooth failure mechanism.
Results from the above-mentioned simulations have shown

the capability of the two-layer MPM approach to model fully
coupled problems that undergo rapid failures. This approach
was able to capture the failure, the post-failure and the
deposition stages, which are essential features to consider in
landslide analyses. Use of a more advanced soil constitutive
model could be helpful to obtain more accurate results.

SELBORNE SLOPEFAILURE SIMULATIONBYSOIL–
WATERTWO-PHASE USING ONE-LAYER MPM
Another case study on the MPM modelling of landslide

failure is given in this section, where the failure and the

post-failure behaviour are integrated into a common
analysis. The real slope remained nearly saturated from
the beginning of the experiment until the end of the
instability except for some points close to the toe. For this
reason the simulation was conducted using the single-layer
MPM (Jassim et al., 2013) to represent a fully saturated
soil. Each material point carries information on both the
solid and the fluid phases and moves attached to the solid
skeleton.

Selborne slope failure experiment
The Selborne slope failure experiment (Cooper, 1996;

Cooper et al., 1998), which was conducted with the purpose
of investigating the nature of progressive failure in over-
consolidated clays, was simulated. Some of the relevant field
observations will be the benchmark data to compare model
response and field data, as follows
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(a) the simultaneous development of failure conditions
starting at the toe and the crest of the slope

(b) the recorded time history of pore pressures in the
vicinity of the failure surface

(c) the geometry of the failure surface, described as a
compound sub-circular surface

(d) the measured displacements of some points of the slope
surface after the failure.

The Selborne experiment was carried out in 1989 (Cooper,
1996) and it was designed to induce failure in a 9 m high, cut
slope. A geological cross-section of the slope in a west–east
direction is given in Fig. 14. The substratum is early
Cretaceous unconsolidated sandstone (Lower Greensand). It
is covered by a clay deposit (Gault Clay), which is over-
consolidated, brittle, high-plasticity clay. Two layers can be
distinguishedwithin the clay deposit according to the degree of
weathering. The upper weathered clay level is subdivided into
LowerGault Clay andUpperGault Clay. A layerof soliflucted
material covers the clay. Increasing the pore pressures within
the slope initiated the slope failure. This was done by injecting
water into the unweathered Gault Clay using vertical wells.
The slope was instrumented using extensometers, piezometers
and inclinometers in order to monitor the development of
failure in the brittle clay. Precise surveying and inclinometers
provided indications on the development of a progressive
failure mechanism (Cooper, 1996; Grant, 1996).

The MPM model
As shown in Fig. 15, a background mesh that consists of

thin, three-dimensional (3D), tetrahedral elements is used
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and 6480 material points are placed in the original slope
position. The mesh is refined in the domain where failure
is expected. The horizontal displacements along the vertical
side boundaries are fixed to be zero and the bottom boun-
dary displacement is fixed in both directions. The soil is
saturated throughout the calculation. The water pressure is
kept to zero along the ground surface and the other boun-
daries are impervious.
The initial excavation and the subsequent period until the

initiation of the failure experiment (5 months) were not
simulated. Therefore, some differences between the actual
initial stress state in the slope and the assumed gravity-related
distribution is expected.
The initial pressure field is in equilibrium with a zero water

pressure applied to the ground surface boundary. In order
to simulate the artificial recharge, an excess of pore pressure
was applied along the lower boundary (see Fig. 15). This
excess pressure rises linearly during 10 s, up to 110 kPa, and
after this time, it is maintained constant throughout the
calculation. Because the numerical scheme is explicit, the
calculation is conditionally stable and the time step incre-
ments are very small. For this reason, the permeability used
in the simulation is several orders higher than the real one.

While the Selborne failure took place on the 196th day after
the beginning of the water recharge, in the MPM calculation
the instability occurs 39 s after starting the water loading. In
order to compare the measured data with the numerical
results, time (tnumerical) has been normalised by the failure
time (T )

t* ¼ tnumerical

T
ð1Þ

Constitutive model
The model consists of two clay layers; weathered Gault

Clay and unweathered Gault Clay. The laboratory testing
programme by Cooper et al. (1998) provided several geo-
technical properties that are summarised in Table 3. Both
weathered and unweathered materials are characterised
by a brittle behaviour, and both peak and residual effective
shear strength parameters were also measured. A strain-
softening constitutive model based on a non-associated
Mohr–Coulomb law was used to simulate the brittleness of
the overconsolidated Gault Clay. Softening behaviour is
accounted for by reducing the strength parameters (effective
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Fig. 12. Pore pressure, vertical effective stress and velocity behaviour at three different material point locations for the levees with different dilation
angles at peak: (a) ψpeak = 0°; (b) ψpeak =− 1°
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friction angle ϕ′ and effective cohesion c′) with accumulated
equivalent plastic strains εeq

p according to the following
softening rules

c′ ¼ c′r þ ðc′peak � c′rÞe�ηεpeq ð2Þ

ϕ′ ¼ ϕ′r þ ðϕ′peak � ϕ′rÞe�ηεpeq ð3Þ

The model requires the specification of peak (c′peak, ϕ′peak)
and residual (c′r, ϕ′r) strength parameters. A ‘shape factor’
parameter η is also necessary in order to control the rate of
strength decrease. The modifications proposed by Abbo &
Sloan (1995) were introduced in the analysis to avoid diffic-
ulties associated with singular points of the yield surface.
Parameters of the strain-softening Mohr–Coulomb consti-
tutive model simulating the brittle behaviour of the clays are
summarised in Table 4. The dilatancy angle was set to zero.
It is well known that the inclusion of strain-softening

features in standard continuum numerical methods leads
to mesh-dependent strain localisation problems (Oliver &
Huespe, 2004). A smeared crack approach (Rots et al., 1985)
has been used as a regularisation technique. It postulates that
the total work dissipated by a shear band of thickness h(Wh)
is equivalent to the fracture energy dissipated in a theoretical
discrete crack (G); hence G ¼ Wh.
In MPM the thickness of a shear band h can be ap-

proximated by the mesh element size. Then, in order to avoid
the mesh size dependence and according to the smeared
crack approach concept, the work dissipated by a shear band
formed by elements of thickness h1(Wh1) should be equal to
the work dissipated by another shear band of thickness
h2(Wh2). Then G¼Wh1¼Wh2. To be consistent, the con-
stitutive modulus of the material should depend on the mesh
element size.
One way to include this dependence is to carry out a set of

numerical shear tests with different element mesh sizes. The
bottom of the sample is fixed and a horizontal prescribed
velocity is applied at the top, ensuring that the final relative
displacement between both sides of the band (Ux) is enough
to degrade the material down to its residual state. Then, a
calibration of the shape factor η can be performed in order to
ensure that the dissipated work is the same for different
element sizes discretising the band.
Thework dissipated in the shear band (per unit length) can

be written as

Wh ¼
ðUx

0
τ dux ð4Þ

The dissipated work is the area defined under the curve
τ–Ux in Fig. 16(b); hence two different shear bands dissi-
pate the same energy when areas A1 and A2 are equal (see
Figs 16(a) and 16(b)).

Figure 16(c) shows the calibrated relationship τ–Ux for
three different thicknesses of the shear band (h¼ 1·0 m,
h¼ 0·7 m and h¼ 0·5 m). Note that the larger the element
size, the higher the shape factor.
Under unsaturated conditions, the strength increases due

to the suction effect, especially the cohesive component.
When soil is close to saturated conditions, the additional
cohesion due to suction csuction can be estimated as

csuction ¼ s tan ϕ′ ð5Þ
where s is the suction and ϕ′ is the effective friction angle. The
residual cohesion of the weathered clay is given a positive,
albeit small, value (4·7 kPa). This value was determined
based on the negative pore water pressures measured in the
vicinity of the final failure surface (between 0 and �42 kPa)
(Cooper, 1996).

Results
Figure 17 shows the evolution of the incremental pore

water pressure at three different points within the slope up
to the failure (t*¼ 1). Numerical results are compared with
field data (Bromhead et al., 1998). The agreement is quite
reasonable, especially in piezometers B and C. Note that
increments in pore pressure above the initial values are
plotted. The initial pore pressures in the model resulted from
an initial saturation of the slope. However, the actual piezo-
meter records show negative pore pressures in several
locations. Field data as well as calculations show a decrease
in pore pressure in the vicinity of the failure time. Cooper
et al. (1998) attributed this decrease to dilatancy. However,
model calculations were run for the zero dilatancy condition.
In this simulation, the decrease in calculated pore pressure is
attributed to a volumetric extension state in locations shown
in Fig. 17. If some dilatancy is included in the model (like the

Table 3. Geotechnical properties (based on Cooper et al., 1998)

Soliflucted clay Weathered Gault Clay Unweathered Gault Clay

Upper Lower

Liquid limit: % 70–75 70–75 60–65 60–65
Plastic limit: % 22 22 22 22
Water content: % 35 30–35 20–30 18
Deformation modulus: MPa — 20–35 20–25 15–40
Effective peak cohesion: kPa 5 10 15 25
Effective residual cohesion: kPa 0 0 0 0
Effective peak friction angle: degrees 21 24 25 26
Effective residual friction angle: degrees 13 13 14 15

Table 4. Material parameters of the modelling

Weathered
Gault Clay

Unweathered
Gault Clay

Porosity 0·38 0·38
Permeability: m/s 0·001 0·001
Solid density: kg/m3 2700 2700
Young’s modulus: kPa 20 000 20 000
Poisson ratio 0·33 0·33
Effective peak cohesion: kPa 13 25
Effective residual cohesion: kPa 4·7 0·5
Effective peak friction angle:

degrees
24·5 26

Effective residual friction angle:
degrees

13·5 15

Shape factor 400 400
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levee case discussed in the previous section), a more intense
decrease in pore pressure is predicted.

In addition to mesh-dependent strain-localisation pro-
blems, separation and splitting in an MPM discretisation
also depends on the mesh size because the material points
remain numerically ‘in contact’ whenever they have a node in
common. This fact may lead to non-physical increase of
material stiffness when two points tend to separate (Huang
et al., 2011).

Three different refined meshes were analysed to evaluate
the effect of the mesh size on the results (h): 1 m, 0·7 m and
0·5 m. In order to minimise the mesh dependency, the
shape factor η was calibrated as described previously. Fig. 18
illustrates the final geometry and the displacement field once
the slope stops for the three MPM calculations, showing that
the slope response becomes essentially mesh independent.
The sliding surface measured in situ is also shown. Fig. 19
shows the total displacement of the crest point becomes
independent of the mesh size. However, if the same shape
factor is adopted for all meshes, the smaller the element size,
the higher are the calculated displacements after the failure.

The initial failure mechanisms obtained with the three
meshes are compared with the measured slip surface in more
detail in Fig. 20. It is clear that the geological discontinuity
between weathered and unweathered clay plays an important
role in the failure geometry. The lower part of the slip surface
is almost horizontal following the contact, although it is
included completely in theweathered layer. Numerical results
indicate that the failure mechanism is located slightly deeper
into the slope than the measurements. This could be an effect
of the orientation of element faces in the MPM mesh
discretisation. The initial failure mechanism also depends on
the stress field. Therefore, some differences can be expected
between numerical results and measurements because the
initial excavation is not simulated in this analysis.
Material point method-predicted surface horizontal dis-

placements at the end of the failure are compared with
measurements in Fig. 21. Because the purely 2D failure
regime was not achieved in the Selborne failure, data have
been grouped into two zones (north and south). The order of
magnitude as well as the distribution of the calculated
horizontal displacements fit very well with field data on the
southern side. The north side appears to provide some
restraint to the motion.
In view of the calculations carried out with three different

meshes (Figs 18–21) it was realised that a 0·7 m mesh size
was appropriate to analyse the Selborne experiment. In
addition, the central processing unit (CPU) time consumed
for this mesh is acceptable (see CPU times in Fig. 19).
The whole instability process is illustrated in Fig. 22. The

evolution of equivalent plastic strain, excess pore pressure
and vertical effective stress is shown at five normalised times
(t*). Note that some scales vary in order to capture the results
properly.

Progressive failure
The interpretation of several inclinometer profiles

(Cooper, 1996) indicated that the failure surface developed
progressively in the manner proposed by Bishop (1971). The
shearing localisation progressed simultaneously from the
higher and lower parts of the final slip surface towards
the central part. Following the idea of Skempton (1964), a
mobilised friction ϕ̂′ is defined

sin ϕ̂′ ¼ q
p� ð6Þ
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Fig. 16. Calibration of the shape factor η of two shear bands with
different thickness (h1 and h2). (a) Scheme of the two bands after being
deformed with the same relative displacement Ux. (b) Relationship Ux
for both shear bands with different shape factors η. (c) Calibrated
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where p*¼ p′þ c′/tan ϕ′, p′¼ (σ′1þ σ′3)/2 and q¼ (σ′1 � σ′3)/2.
Note that the definitions of p and q here are different from
the previous case.
This measure of the mobilised strength allows comparison

of the evolution of stresses of points belonging to the failure
surface. The mobilised friction angle along the initial failure
mechanism has been determined for different times. Fig. 23
provides a clear view of the progressive failure phenomenon.
Initially all material points are in elastic regime (Fig. 23(b)).
As water pressure increases, ϕ̂′ approaches the peak value. P2
is the first point to reach the peak yield surface at t*¼ 0·81

(Fig. 23(c)). The failure propagates and at t*¼ 0·85 the upper
part of the shear band (P1, P2) is at residual conditions. At
this time, the toe of the slope (P7) also reaches the peak
conditions (Fig. 23(c)). Afterwards, the progressive failure
stops, whereas the shear stressing increases within the elastic
range in the central part of the slide surface. Progressive
failure is resumed at t*¼ 0·953 and it progresses from the toe
to the centre part of the slope (plastic points P6, P5 and P4)
(Fig. 23(d)). Finally, the failure mechanism is completed and
the entire failure surface approaches residual conditions.
Immediately after, the sliding motion starts. Even if the
numerical simulation performed does not consider the effects
of the initial excavation, it is clear that a comparison of Fig.
23 with the progressive mechanisms described in Cooper
(1996) reveals that both failures develop in a similar way: the
higher and the lower part of the slope plasticise first and
finally the central part reaches residual conditions.
A significant improvement over static formulations is

that the dynamic behaviour of the slide instability can be
analysed in conjunction with the pre-rupture phenomenon.
The calculated motion paths, total displacement, velocity
and acceleration of points C1, C2, C3 and C4 (Fig. 24(a)) are
shown in Figs 24(b)–24(d). When analysing these plots it can
be observed that the embankment remains stable until t*¼ 1.
When the failure mechanism develops those material points
located above the shear band (C1, C2 and C3) accelerate
quickly and a peak velocity is attained at t*¼ 1·1. Afterwards,
the acceleration becomes negative and the velocity decreases
towards a new state of equilibrium. At t*¼ 1·2 the slope tends
to stabilise. Note that the dynamic variables depend on the
position of the point within the slope: C4 remains motionless
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Fig. 18. Final distribution of the material points and displacement fields for the three MPM calculations: (a) h=1·0 m; (b) h=0·7 m;
(c) h=0·5 m of refined element size. The slip surface measured in the field is indicated by the dashed line
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during all the calculation and C3 initially at the slope toe
moves a small distance. In fact, soil located above the toe level
rolls over the toe. The model indicates that the maximum
sliding velocity was around 0·83 m/s in the middle and upper
parts of the slope.

Behaviour at material points
The stress path p′–q of the material points P2 and C4 are

represented in Figs 25(a) and 25(c), respectively, in which

peak and residual Mohr–Coulomb yield surfaces have also
been included. P2 is located in the weathered clay layer,
whereas C4 is in the unweathered material. Starting at an
initial gravity-induced elastic stress state, the effective volu-
metric stress p′ reduces in P2 due to the rise of pore pressure
along part of the lower boundary. Afterwards, the shear stress
t slightly increases until the peak yield surface is reached. At
this point, the softening process reduces the strength down to
residual conditions, while pore pressures continue to increase
(Figs 25(a) and 25(b)). During the movement, the stresses

Measured slip surface
MPM simulation (mesh size 1·0 m)
MPM simulation (mesh size 0·7 m)
MPM simulation (mesh size 0·5 m)

Fig. 20. Comparison between the initial failure mechanisms obtained with the MPM simulations and the measured slip surface
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vary but remain in residual conditions. Finally, when the
slope is stabilised, the stresses relax slightly and P2 comes
back to the elastic region. Point C4 behaves in a different
manner. Because it is located under the toe of the slide, far
from the water recharge, p′ does not decrease and it remains
in elastic conditions throughout all the calculation. On the
contrary, p′ increases due to stacked material lying on top of
it at the end of the instability.

In order to provide an overall view of the slope instability,
Fig. 26 shows in a unified way the progressive failure process,
the stress evolution and the kinematic behaviour of the
slide. The evolution of mobilised friction angle and total

displacement of three selected material points initially
located at the shear band (P1, P5 and P7) are presented. In
addition, vertical arrows indicate reference times of Fig. 23.
Some time is needed until the water pressure is high enough
to bring some points to a failed state. Between t*¼ 0·83 and
t*¼ 0·85 progressive failure starts at the higher part (P1) and
the toe (P7) of the slope. The progressive shear localisation
reactivates along the base and the central part of the failure
mechanism (P5). Residual strength conditions along the
entire failure surface are necessary to initialise the motion of
the slope at t*¼ 1·0. Immediately after the reactivation of the
shear localisation, total displacements increase rapidly with
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the motion and all points of the sliding surface remain
at residual conditions. Finally, a new stable geometry is
achieved at t*¼ 1·2 and the slope ceases to flow. Some points
experience a small unloading and become elastic.

CONCLUSIONS
Traditional geotechnical analyses for landslides involve

failure prediction (i.e. on-set of failure) and the design of struc-
tures that can safely withstand the applied loads. However,
they provide limited information on the post-failure behav-
iour. Modern numerical techniques are capable of simulating
large mass movements and there is an opportunity to utilise
such techniques to assess the risk of catastrophic damage
due to a landslide. In this paper, various large-deformation
analysis methods are introduced and their applicability to
landslide problems is discussed.
Catastrophic landslides often involve seepage forces and

hence consideration of the coupled behaviour of soil and pore
fluid is essential. In this paper, different numerical techniques
to model large deformation are introduced to provide a refer-
ence point for the readers to understand the research trend in
this area. In particular, MPM was selected as the authors’
choice, primarily because: (a) the implementation is intuitive
for users of FEM; (b) it can incorporate advanced history-
dependent soil constitutive models; and (c) its application of
boundary conditions is more straightforward than other mesh-
free methods owing to the presence of the background grid.
Two approaches to model soil–pore fluid coupling are

introduced and an example simulation is presented for each
approach. One example is for a model levee failure and the
other is on a natural cut slope failure (the Selborne experi-
ment). In the levee failure case, MPM simulation was able to
capture the complex failure mechanism that includes the
development of successive shear bands while predicting
excess pore pressure generation during the failure propa-
gation, and finally the consolidation stage. The simulations
demonstrated the importance of the dilation characteristics
of soil as well as changes in geometry for post-failure beha-
viour. In the Selborne case, MPM was able to simulate the
progressive failure of the brittle, overconsolidated clay. It
showed the evolution of shear stresses along the failure sur-
face. The changes in pore pressure at some specific locations
and the actual shape of the failure surface were well captured.
The importance of modelling the shear band accurately
within the MPM framework is highlighted.
The single-layer two-phase MPM formulation is compu-

tationally more efficient than the two-layer formulation.
If the fluid flow within a soil and its geotechnical conse-
quence are the major concern, it is an effective method. The
two-layer formulation ensures that the masses of both soil
and water are conserved. It can be used to model various
interactions of soil andwater explicitly. Examples include soil
fluidisation and erosion in a submerged soil system due to
dynamic water movements at the interface, internal soil
erosion and sand production process due to seepage, and so
on. However, it requires more computational time than the
single-layer two-phase MPM formulation.
Although the example cases described in this paper demon-

strate the potential opportunities for large-deformation
analysis to predict both pre- and post-failure behaviour of
landslides, further work is required to develop the confidence
of geotechincal engineers in using such tools in their engineer-
ing practice. For example, further improvement is needed
to ensure that the coupled analysis can be performed with
limited numerical errors and in a more computationally
efficient manner. The feasibility of available soil constitutive
models for large-deformation analysis needs to be investi-
gated. In particular, it is necessary to model the unsaturated

soil behaviour accurately, because many of the regions that
undergo landslides are unsaturated in the beginning. More
case studies are needed to understand their capabilities and
limitations. Finally, further work is needed to show the
capabilities and limitations of the two formulations presented
in this paper.
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NOTATION
aws fluid acceleration with respect to the soil skeleton
c′ effective cohesion

c′u,mob mobilised capillary cohesion
E Young’s modulus (Pa)
G fracture energy dissipated in a theoretical discrete crack
h shear band thickness
k0 initial permeability (m/s)
m Kronecker delta vector
mp mass of a material point ‘p’
p pressure
p′ mean effective stress
p* p*¼ p′þ c′/tan ϕ′
q deviatoric stress

Sw saturation ratio
s suction
T field time for failure
tk current time step

tnumerical equivalent numerical time
t0 reference time
t* normalised time
Ux final relative displacement between both sides of a

shear band
u displacement
ux relative displacement between both sides of a shear

band
Vp volume of a material point ‘p’
vp velocity of a material point ‘p’
vs volume of solids
vw volume of water
Wh work dissipated in the shear band (per unit length)
Xi computational node ‘i’ of the grid in material point

method
xp position of a material point ‘p’
α (friction / dilation / cohesion)

γcritdev; pl plastic deviatoric strain at critical state
γdev,pl total plastic deviatoric strain
γpeakdev; pl plastic deviatoric strain at peak

εpeq equivalent plastic strain
η shape factor
η0 initial porosity
ν Poisson ratio
ρs solid grain density (kg/m3)
σ′ effective stress
ϕ′ effective friction angle (degrees)
ϕ̂′ mobilised friction angle
Ψ dilation angle
Ω domain

Subscripts
crit critical state

mob mobilised
p at material point

peak peak
r residual
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