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This chapter addresses the following questions: How, and how accurately, can the
children’s performance on a L2 English proficiency test administered around age
12 (T3) be predicted on the basis of test and questionnaire data that were collected
one-and-a-half years earlier (T1)? The analyses suggest that a fairly simple equa-
tion can predict the score at T3 on new data with an average error of 1.8 points
on a 20-point scale. This equation contains seven input variables available at T1.
This accuracy corresponds to a R2 of 0.58. The seven input variables comprise
questionnaire-based affective variables, as well as aptitude measures and German
(the pupils’ school language) reading test data. Most of the heavy lifting, however,
is done by an English proficiency test administered at T1, which by itself can predict
new T3 data with an average error of 2.0 points (R2 = 0.41).

1 Prognostic perspective on aptitude

Language aptitude testing originated in an interest in prognostic testing. As dis-
cussed in Chapter 1, early tests were designed to identify the strong learners
within groups of students. This is also one of the research questions of our LAPS
project: What is the prognostic value of the aptitude tests for the development of
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proficiency in the foreign language? The secondmain question, regarding the un-
derlying structure of individual dispositions to language learning, is discussed in
Chapter 3.Whereas the investigation of dimensionality draws on and contributes
to theory building and development regarding the construct of language aptitude,
we opted to approach the question of prognostic modelling without a priori the-
orizing the relative weights of the constructs included in our investigation: We
ask how the information gathered at T1 predicts English proficiency 1.5 years
later at T3.1 The overall aim is to extract a set of predictors that, taken together,
would allow teachers to estimate the potential development of their students.

2 Modelling strategy

In a first step, our aim is to determine the model that most accurately predicts
children’s English proficiency at T3 when all variables assessed in the project
are considered (we refer to this as the “no costs spared model”). In a second step,
we attempt to find a model that is suitable for application in a classroom with
comparable predictive value to the “no costs spared model”. We refer to such a
model as the “cheap model”. We require that such a model be based on tasks
that can be conveniently administered within a 45 minute lesson and evaluated
easily by a non-specialist teacher. To this aim, we compared the comprehensive
(i.e. no costs spared) model against simpler models, which included background
information readily available to the teacher and short tests from our test battery.

The main steps of the process will be summarized in the following. For full de-
tails on how we went about building the predictive models, the reader is referred
to the technical report (Vanhove 2021).

1. Split up the dataset into a training and a test set. The training set was used
for trying out different models and for gauging the strength of these dif-
ferent models. Based on the results, the optimal, final model was selected.
The test set was used for validating the selected model.

2. Compute scores for constructs such as intrinsic motivation and locus of
control. Because of their conceptual and statistical ease of use, we preferred
equally-weighted scales wherever they seemed reasonable.

1It is, of course, also possible to fit models that predict a student’s performance on the English
test at the second data collection using information available at the first or that predict their
performance at the third data collection using information available at the first and second.
Indeed, in preliminary analyses we also fitted such models. We limit our discussion here to the
models we consider the most relevant ones.
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3. Exclude students that are not of interest for the present research ques-
tion. These are students whose native language is English or who were
exempted from English classes. Pupils who did not take the T3 English
test were also excluded from the analyses.

4. Reduce the number of predictors. We removed predictor variables with
little variance in the training set and we removed one predictor (ELFE to-
tal) showing a very strong intercorrelation (0.94) with ELFE word in the
training set.

5. Impute missing data. Missing values in the predictor variables that were
retainedwere imputed using themedian of the available values of the same
variable.

6. Fit models and cross-validate them in the training set. In order to gauge
these models’ predictive strength without turning to the test set, cross-
validation was applied (§3.2). This is a technique that essentially mimics
the partitioning of the overall dataset into a training and test set (§3.1). We
fitted a whole family of models:

a. A “no costs spared” model with all variables assessed.

b. Two simple baseline models so that we could get a sense of how
much better the “no costs spared” model actually performed in cross-
validation.

c. Four “cheap” models that could potentially be applied in classroom
settings.

7. Select the final models. The final “no costs spared” and the final “cheap”
models were decided on by the research team based on the candidate mod-
els’ likely predictive strength (estimated by cross-validation) and, in the
case of the “cheap” models, the costs involved in obtaining the predictor
information required.

8. Assess the predictive strength of the finalmodel using the test set. The final
model was refitted on all of the training data and its predictive strength
was then tested on the test set. Importantly, the model’s parameters and
settings were not re-estimated or tweaked using the test set.
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3 Data partition and cross-validation

3.1 Training and test sets

Some analyses in this project are exploratory by nature (e.g., the exploratory
factor analysis in Chapter 3). Exploratory analyses entail the substantial risk that
themodels tightly fit the dataset analyzed but do not generalizewell beyond it. To
offset this risk, we partitioned the dataset analyzed in this chapter into a training
set and a test set (see Kuhn & Johnson 2013).

The training set was used to conduct all exploratory analyses and to decide on
suchmatters as data transformations, the calculation of construct scores, missing
data imputation, model specification – in a nutshell, any step in the analysis that
requires the analyst to take a decision. Once a suitable predictive model was
agreed upon, its predictive power was tested on the test set. Crucially, the chosen
predictive model was not re-estimated using the test set data.

To respect the hierarchical nature of the data (children in classes), the test and
training sets were not random subsets of the children in the study, but rather
(largely) random subsets of the classes in the study (see Roberts et al. 2017). In this
way, we could account for the clustering of the pupils in classes when estimating
the prediction error in our models. Specifically, from the 17 grade 4 classes at T1,
5 were selected to comprise the test set: the smallest class (Class 4, with 5 grade 4
pupils at T1)2 as well as four randomly picked classes. Similarly, from the 19 grade
5 classes at T1, 6 were selected to comprise the test set: the smallest class (also
Class 4, with only 1 grade 5 pupil at T1) as well as five randomly picked classes.
The remaining 12 grade 4 and 13 grade 5 classes comprised the training set.

3.2 Cross-validation

When trying out different models on the training data, we used cross-validation
to estimate how well the models would work for new data.3 This was done to
ensure that overzealous data exploration and model fine-tuning would not result
in a model that fits the training data well but stands little chance of predicting the
test data (see Kuhn & Johnson 2013, Yarkoni &Westfall 2017). In cross-validation,
the training data is split up into a number (𝑘) of folds, andmodels are fitted on 𝑘−1
folds and then used to predict the outcome in the remaining fold. This process is
repeated 𝑘 times, each time leaving out a different fold. The result is 𝑘 estimates

2The sometimes small number of pupils per class is a consequence of some of the classes being
mixed grade.

3This section is adapted from Vanhove et al. (2019).
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Table 1: Training and test sets. Note: The number of classes sums to
36 rather than 32 because four classes had pupils from both 4th and
5th grade at T1. Only pupils for whom T3 English sores were available
were included in the predictive models; for the final models, we only
included participants who also had T1 English scores.

Set Cohort Classes English data at

T3 only both T1 and T3

Training 4th grade at T1 12 169 154
5th grade at T1 13 187 177

Test 4th grade at T1 5 70 65
5th grade at T1 6 85 80

of the models’ predictive accuracy on data not used for fitting the model that can
then be averaged. The folds were not constructed randomly, since we need to
account for the dependency structure in the data (pupils in classes). Therefore,
we opted for block cross-validation, using each class as a separate fold.

Figure 1 (page 96) illustrates the principles behind the partitioning of the data
and block cross-validation.

3.3 Metrics of model performance

The root mean squared error (RMSE) was used to adjudicate between different
models. The RMSE can be interpreted as being roughly – but not quite – the av-
erage difference between a model’s predictions and the observed values. (In the
same way that a standard deviation can be interpreted as being roughly – but not
quite – the average difference between the observations and their mean.) The in-
terpretation of the mean absolute error (MAE) is simpler: It is the average (mean)
difference between a model’s prediction and the observed values. We report both
metrics in this chapter.

Many readers will be more familiar with the R2 metric of (so-called) “ex-
plained” variance. Several problems beset R2, but perhaps most important of all
is that R2, as it is traditionally computed, does not estimate how well the model
itself would capture the variance in a new sample. Instead, it estimates (at best)
how well a newly estimated model would capture the variance in a new sample.4

4There exist different ways of computing R2 (Kvalseth 1985). For ordinary regression models,
these all yield the same result. However, when the model is used to predict observations that
were not used when fitting the model, they do not. One popular method for computing R2 is
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Figure 1: Illustration of how the data were partitioned into a training
(𝑁 = 356) and a test set (𝑁 = 155) and of how block cross-validation
works. Only two iterations of block cross-validation are shown; in re-
ality, 22 took place for each model, each time leaving out a different
class. Figure based on Figure 3 in Vanhove et al. (2019).

to square the correlation between the predicted and observed values. This is problematic since
the correlation between predicted and observed values can be excellent even if the former
corresponds poorly to the latter (e.g., the values 1, 2, 3 correlate perfectly with the values 2000,
4000, 6000 but correspond poorly to them). We therefore computed R2 as the proportional
decrease in the residual sum of squares relative to a baseline model without any predictors.
Such a model predicts each new observation to be equal to the mean of the training data
(footnote adapted from Vanhove et al. 2019).
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4 Selection of the “no costs spared” model

As shown in Table 1, the training set for T3 comprised 169 4th graders and 187 5th

graders. The test set comprised 70 4th graders and 85 5th graders.
To fit the “no costs spared” model, all available T1 information, from all possi-

ble sources, was allowed to enter into this model, without regard to how difficult
or costly it was to collect this information.

To arrive at the final model in this category, a host of models were fitted on
the training data. These included multiple linear regression, robust regression,
ridge regression, elastic net, multivariate adaptive regression splines, generalized
additive models, partial least squares regression, k-nearest neighbors, regression
trees, random forests, support vector machines, stochastic gradient boosting, and
Cubist.5 A multiple linear model with seven predictors and no interactions (Ta-
ble 2) performed roughly on par with the more complex approaches in cross-
validation. When fitting the final model, we only took into account participants
who had T1 English test scores. The model’s estimated coefficients are shown in
Table 2.

We want to draw the attention of any reader who wishes to use this model
for understanding (as opposed to predicting) foreign-language learning to what
Breiman (2001) calls the “Rashomon effect”: While the presented model worked
best in cross-validation, a number of models with different predictors fared only
slightly worse. Consequently, one would be jumping to conclusions if one said
that the seven predictors listed in Table 2 are important in foreign-language learn-
ing and the others are not. The performance of the more complex models in
cross-validation can be consulted in the online materials6.

Second, we fitted two simple baseline models so that we could get a sense
of how much better the “no costs spared” model actually performed in cross-
validation. The first baseline model was a “no predictor” model, which predicted
each unseen data point to be equal to the mean of the seen data points. The
second was an “English-only” model, which only contained the participants’ T1
English test score as the predictor of their T3 English test score. This was done
because the English score at T1 unsurprisingly explains the largest share of vari-
ance of English at T3 since it taps into the same construct.

In cross-validation, the “no costs spared” model (Table 2) with seven predictors
fitted the data better than the baseline models, the residual sum of squares is
reduced by about 58% relative to an intercept-only model (i.e., R2RSS = 0.58, 95%
CI: [0.49, 0.66]).

5For details on the architecture of these models, see www.osf.io
6https://osf.io/ha7s2/
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Table 2: Multiple linear regression model for predicting T3 English
scores. Note: Missing predictor data were imputed using median im-
putation using the full training set data. Median = the predictor’s me-
dian in the training set (used in imputation). Estimate = the estimated
regression coefficient for the predictor. SE = the naïve standard devi-
ation for the estimated regression coefficient; naïve meaning that its
computation did not take into account the fact that this model was se-
lected for its performance in cross-validation.

Term Median Estimate SE

Intercept 0.045 1.4
English T1 49 0.093 0.010
Grade at T1 5 −0.55 0.31
Intrinsic motivation 3 0.48 0.22
Self-concept English 3 0.89 0.22
German (ELFE sentences/minute) 7.33 0.49 0.08
Grammatical sensitivity (gra) 15 0.047 0.023
Inductive ability (ind) 5 0.16 0.05

The “no costs spared” model’s root mean square error (RMSE) in cross-valida-
tion was 2.24 (95% CI: [2.02, 2.47]), and its mean absolute error (MAE) in cross-
validation was 1.77 (95% CI: [1.60, 1.95]). For reference, an intercept-only model
yielded a RMSE of 3.69 and a MAE of 2.93. A linear model with a single predictor,
viz., the participants’ English score at T1, was also fitted and cross-validated. This
model yielded R2RSS = 0.42, RMSE = 2.61 and MAE = 2.03. These results from the
cross-validation analysis, also shown in Figure 2, suggest that there is a consider-
able gain in predictive performance when English at T1 is used, and some further
gain when, in addition to English at T1, the other six predictors from Table 2 are
included.

When applied to the test set, the linear model with seven predictors reduced
the residual sum of squares by about 62% relative to the intercept-only model
(i.e., R2 = 0.62, 95% CI: [0.52, 0.70]). Its root mean square error (RMSE) was 2.32
(95% CI: [2.02, 2.60]) and its mean absolute error (MAE) 1.85 (95% CI: [1.63, 2.08]).

These results are summarized in Figure 2.

5 Selection of the “cheap” models

Next, we fitted four models that include sets of variables that are less costly to
acquire or even completely “free” in the sense that the required information on

98



4 Predicting L2 achievement

Figure 2: Performance of the chosen model relative to two baseline
models. Note: The R2 value for the intercept-only model is not shown
as it is 0 by definition. The 95% confidence intervals were obtained by
bootstrapping the 22 cross-validation estimates or by bootstrapping
the observed and predicted test set values and recomputing the esti-
mates (percentile approach). The English-only model wasn’t applied
to the test set.

the pupils is usually a given in the school context. We refer to these models as
“cheap” models. They could be used in a classroom setting without having to col-
lect data during four full lessons, the required time for the full LAPS test battery.
The rationale here is to explore the possibility of predicting foreign language
achievement based on information that is not complicated to get.

Free variables encode information that is available to teachers anyway as op-
posed to, say, a computer-based test of working memory. Information included
as “free variables” were whether students had additional support in class, grade,
and whether their L1 was German. This only involves information that wouldn’t
lead to discrimination based on sex (no gender variable) or possibly socioeco-
nomic background (no SES variable from the parent questionnaire).

Relatively “cheap” variables are measures that are easy to take (paper and pen-
cil instruments in the case of the aptitude tests, or questionnaire items on mo-
tivation). In this selection process, we also took into consideration a small set
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of measures that are somewhat less straightforward to acquire (since they need
to be purchased and/or adapted), such as language tests and aptitude tasks, but
that are highly relevant to the central constructs of our investigation. Included
here were thus T1 English score (OYLPT), T1 German score (ELFE), T1 motiva-
tion questionnaire-based construct scores, and the inductive ability score (PLAB
form 4).

Four cheap models were fitted. The first one includes English at T1 and all the
free variables mentioned above. The second includes reading skills in the school
language (German) and all free variables. The third includes the motivational
items regarding English and the free variables, and the last one motivational
items and the adaptation of the PLAB subtest of inductive learning. The perfor-
mance of these four models on the test set are given in Table 3.

Table 3: The four cheap models and their performance on the training
and (for two of them) test sets. Tr: Training set; Te: Test set. Note: The
training set estimates were obtained through cross-validation.

Model no. & included variables RMSE MAE R2

Tr Te Tr Te Tr Te

1 English T1 + free variables 2.48 2.52 1.99 1.96 0.47 0.55
2 L1 German (ELFE) + free variables 2.69 2.19 0.39
3 Motivation + free variables 2.83 2.27 0.34
4 Motivation + ind + free variables 2.69 2.82 2.16 2.24 0.40 0.46

Our research group then discussed which ones of these cheap models should
be validated on the test set. For the reasons spelled out above, most importantly
to avoid over-fitting, we wanted to select a maximum of two models. Given the
known strong association of the English at T1 test with our outcome variable at
T3, the first cheap model was to be retained. The second model selected was the
next best model according to the MAE and RMSE performance on the training
set. This model includes motivational items and the inductive ability test based
on a form of the PLAB.7 The first and fourth model were then applied to the test
set. When applied to the test set, the cheap model 1 (English at T1 and all of the
free variables) did better than the cheap model 4 (motivation, inductive ability
and free variables). As a reminder, the free variables contain information that

7With the kind permission of Charles Stansfield, LLTF, we adapted this form of the PLAB with-
out having to pay any fees. If, however, a German version of PLAB should be developed in the
future, this would most likely not be free to use.
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is often known anyway to teachers (and if not readily available), e.g. whether
students had additional support in class, the pupils’ current grade, and whether
one of their L1 was German. This cheap model 1 has an R2 of 0.47 on the training
set and of 0.55 on the test set.

6 Discussion

The general goal of the analysis presented in this chapter was to assess the possi-
bility to prognosticate foreign language development in primary school children.
As discussed in Chapter 1, prognostication was what inspired the first practition-
ers and scholars to develop modern language aptitude tests: Predicting the suc-
cess in learning a new language would help select the “apt” learners and prevent
spending time and money on not so apt individuals. Most of this research and
development focused on (young) adults and adolescents.

Our primary goal was not to provide an instrument for selection – foreign lan-
guage education in the context investigated here is compulsory anyway. How-
ever, prognostication can serve other purposes as well (see Chapter 11 for a dis-
cussion).

Our attempt to investigate prognostication took several alternative paths. The
first path, the “no costs spared” approach, took all information available at T1
into consideration. The multi-step modelling procedure explained in this chapter
yields a model that we expect to predict the English score (on a scale from 0 to
20) of new data with a mean absolute error of about 1.8 points. Whether this is
a good or a bad model performance depends on the criteria one wishes to apply.
It certainly shows that the development in the foreign language is not simply
random but is constrained by some of the constructs known and used in research
on individual differences in language learning. Among the seven predictors in the
model that showed the best performance on our test set, we find both emotional/
motivational variables (intrinsic motivation, self-concept) and language-related
variables (grammatical sensitivity [based onMLAT-E part 2] and inductive ability
[based on PLAB, form 4], but also German reading proficiency).

The fact that the English skills tested one and a half years before T3 is the
best predictor for the same skill is not surprising. But it also shows that, within
the time interval covered by this study, relative differences in English skills are
retained (see Chapter 10 for an analysis of the intra-individual stability across
time of other constructs).

As discussed above, other models with different sets of predictors show almost
the same performance (Rashomon effect). The list of variables of our best model
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therefore is not to be read as a final list of predictors of success in foreign lan-
guage learning, implying that the variables not retained are not important. What
our analyses merely show is that these measures are robustly associated with for-
eign language development, even when we apply cautious modelling that aims
at avoiding over-fitting the data. In support of the relevance regarding the vari-
ables just mentioned, we can also refer to the cross-sectional analysis discussed
in Chapter 3 where we show that these variables are part of the two constructs
that are positively associated with English skills at T1 (we labelled these factors
Cognition/Aptitude and L2 Academic Emotion).

Among this first set of models that yield the optimal “no cost spared” model,
we found that a simple model with T1 English as its sole predictor performs
roughly on par with the other, more complex models (state estimate of about
2 on a scale 0–20).

After this first analysis, we took a less maximalist but more pragmatic perspec-
tive on prognostication. This involved fitting four “cheap” models to the data sets.
In certain pedagogical contexts, it can be useful to assess individual differences
in foreign language learning with relatively simple tests. Thus, we compared dif-
ferent sets of tests with respect to their prognostic values. All of them can be
administered in a classroom setting and do not take up more than 45 minutes.
These models include only variables that are already available to the teacher or
that do not require complicated testing procedures. From these cheapmodels, the
one with the T1 English test score plus the free variables and the one with moti-
vation plus the inductive ability test from the PLAB plus the free variables were
selected and applied to the test set. Based on a comparison of the performance of
these models, it appears reasonable to use the Oxford Young Learners Placement
Test plus the set of information we termed the “free variables” for prognostic use.
This test of English skills is not freely available (it currently costs around £5 per
pupil) and it would be a matter of choice on the part of the teachers or schools
whether they would wish to consider such a test.

The analysis in this chapter aims to identify the best combination of measures
taken at T1 to predict English skills at T3. The models discussed here, and their
variable prognostic performance, are not designed with the goal to disentangle
the different dimensions of predispositions for language learning. This was the
main goal of the analyses in Chapter 3. Despite the different questions asked in
Chapters 3 and 4, it seems reassuring that when looking at the list of variables
in our “no costs spared” model (Table 2), we find tests that all load onto one
of the two factors that are positively associated with English skills at T1, that is
measures we subsumed under the two labels cognition/aptitude and L2 academic
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emotion in Chapter 3. As in that preceding chapter’s analyses, extrinsic motiva-
tional constructs are not first in line when their association with English skills is
investigated.
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