Preprint Open Access

Measuring trust in automated driving using a multi-level approach to human factors

Clement, Philipp; Danzinger, Herbert; Veledar, Omar; Koenczoel, Clemens; Macher, Georg; Eichberger, Arno


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Clement, Philipp</dc:creator>
  <dc:creator>Danzinger, Herbert</dc:creator>
  <dc:creator>Veledar, Omar</dc:creator>
  <dc:creator>Koenczoel, Clemens</dc:creator>
  <dc:creator>Macher, Georg</dc:creator>
  <dc:creator>Eichberger, Arno</dc:creator>
  <dc:date>2021-09-06</dc:date>
  <dc:description>As the driving is shifting towards automation, the maximization of related benefits would profit from improved user acceptance of the new technology. Studies suggest a strong connection between acceptance and trust in technical solutions. We investigate the improvement of user trust to driving automation through demonstrations that carried on a sophisticated driving simulator. The study correlates subjective data with objective psycho-physiological measurements. The multi-factorial and multivariate analysis of variance investigates the influence of learning effects and pre-experience with ADAS on trust. Results show improvement in trust through user interaction with a human-machine interface of the demonstrated AD system, hence illustrating the relevance of human-centered development processes. The conclusion is supported by the observation of driver cardiac signals.</dc:description>
  <dc:identifier>https://zenodo.org/record/5464509</dc:identifier>
  <dc:identifier>10.5281/zenodo.5464509</dc:identifier>
  <dc:identifier>oai:zenodo.org:5464509</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/723324/</dc:relation>
  <dc:relation>info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Research and Innovation action/871385/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.5464508</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/teaching-h2020</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>In cabin measurement, HMI, trust, comfort, driver state, ADAS/AD, multi-level approach, psychophysiology, heart-rate</dc:subject>
  <dc:title>Measuring trust in automated driving using a multi-level approach to human factors</dc:title>
  <dc:type>info:eu-repo/semantics/preprint</dc:type>
  <dc:type>publication-preprint</dc:type>
</oai_dc:dc>
30
29
views
downloads
All versions This version
Views 3030
Downloads 2929
Data volume 22.1 MB22.1 MB
Unique views 2626
Unique downloads 2727

Share

Cite as