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Abstract

Agricultural monitoring systems require spatio-temporal information on widely cultivated staple crops like

rice. More emphasis has been made on area estimation and crop detection than on the temporal aspects of

crop cultivation, but seasonal and temporal information such as i) crop duration, ii) date of crop establish-

ment and iii) cropping intensity are as important as area for understanding crop production. Rice cropping

systems are diverse because genetic, environmental and management factors (GxExM combinations) influ-

ence the spatio-temporal patterns of cultivation.

We present a rule based algorithm called PhenoRice for automatic extraction of temporal information

on the rice crop using moderate resolution hypertemporal optical imagery from MODIS. Performance of

PhenoRice against spatially and temporally explicit reference information was tested in three diverse sites:

rice-fallow (Italy), rice-other crop (India) and rice-rice (Philippines) systems.

Regional product accuracy assessments showed that PhenoRice made a conservative, spatially repre-

sentative and robust detection of rice cultivation in all sites (r2 between 0.75 and 0.92) and crop es-

tablishment dates were in close agreement with the reference data (r2 = 0.98, Mean Error = 4.07 days,

Mean Absolute Error = 9.95 days, p < 0.01). Variability in algorithm performance in different conditions in

each site (irrigated vs rainfed, direct seeding vs transplanting, fragmented vs clustered rice landscapes and

the impact of cloud contamination) was analysed and discussed. Analysis of the maps revealed that cropping

intensity and season length per site matched well with local information on agro-practices and cultivated

varieties. The results show that PhenoRice is robust for deriving essential temporal descriptions of rice

systems in both temperate and tropical regions at a level of spatial and temporal detail that is suitable for

regional crop monitoring on a seasonal basis.
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1. Introduction

1.1. The challenge of mapping and monitoring rice

Information on where and when crops are grown is fundamental to agricultural monitoring and reporting

systems. The importance of remote sensing in generating this information has been identified by the Group

on Earth Observations Global Agricultural Monitoring Initiative (GEOGLAM – Group on Earth Observation

(2013)). One component of GEOGLAM emphasises the need for research on the development of best

practices for agricultural monitoring in diverse environments, and is closely associated with the goal of the

Joint Experiment of Crop Assessment and Monitoring (JECAM, 2015) to reach a convergence of approaches

for monitoring protocols. This component includes methods that are suited for particular environments and

crops that are specific to those environments as well as methods that can work across different environments.

Methods that are robust across different environments are advantageous for mapping and monitoring staple

crops such as wheat, maize and rice, each of which is grown in 120 or more countries with a combined

harvested area of 568 million hectares in 2014 (FAO, 2016). The importance of these staple crops for food

security and the geographic extent and range of environments in which they are cultivated requires robust

mapping and monitoring methods that can be used at scale (Whitcraft et al., 2015) and which can cope

with the expected variability in crop environments.

Rice, a staple crop, has sufficient genetic diversity to permit its cultivation across a range of environments.

Rainfall in rice-growing areas can vary from over 5,000 mm y-1 along Myanmar’s Arakan Coast to less than

100 mm y-1 in Al Hasa Oasis in Saudi Arabia; average temperature during the rice growing season can

vary from highs of 33 °C in Sindh, Pakistan, to lows of 17 °C in northern Japan and rice can be cultivated

from sea level up to 2600m on the terraces of Nepal and Bhutan (Boschetti et al., 2014). Rice can also be

cultivated under a wide range of management conditions: from highly mechanised, irrigated, single summer

cropping - e.g., Italy, Japan, the U.S., Australia, Brazil, to the more marginal rainfed rice systems across

Latin America, sub-Saharan Africa, and South and South-east Asia; in rotation with other crops such

as the vast rice/wheat systems of India and China, and intensive, irrigated triple cropping in Indonesia

and Vietnam (Boschetti et al., 2014; GRiSP (Global Rice Science Partnership), 2016). This variability in

∗Corresponding author
Email addresses: boschetti.m@irea.cnr.it (Mirco Boschetti), busetto.l@irea.cnr.it (Lorenzo Busetto),

a.nelson@utwente.nl (Andrew Nelson)

Preprint submitted to Elsevier 12.29.2016



Pre-print, submitted for publication to Remote Sensing of Environment. The final approved manuscript is
available at 10.1016/j.rse.2017.03.029

rice cultivation leads to three particular challenges for remote sensing based observation and monitoring:

variation in growing period, variation in date of crop establishment (sowing or transplanting) and variation

in cropping intensity (Nelson et al., 2014).

Although detecting the common practice of agronomic flooding of the rice paddy prior to crop establish-

ment has been demonstrated (Xiao et al., 2002) and evaluated (Boschetti et al., 2014) as a component of

remote sensing methods to detect rice growing areas, the subsequent crop growth rate in the vegetative and

reproductive phases (from germination to flowering) can vary depending on variety and weather (GRiSP

(Global Rice Science Partnership), 2016). A short duration, modern rice variety with a growing period of

90 days in the tropics may reach flowering in 30 to 40 days after transplanting, whereas a long duration,

traditional variety with a growing period of 160 days in a temperate climate may take up to 120 days to

reach flowering. Farmers in temperate, sub-tropical and tropical areas may choose short, medium or long

duration varieties to suit local conditions, their own preferences, or to match market demands (Calingacion

et al., 2014; Laborte et al., 2015). The influence of social and economic factors in varietal choice means that

the crop growth rate is not solely related to latitude or cumulated growing degree days. Robust methods

for monitoring the rice crop need to accommodate this variability in growth duration.

The choice of when to establish a crop can be driven by several factors such as: temperature constraints

to avoid both low and high limiting temperature conditions in key stages of the season; water availability in

water-limited environments; temporal variability in water salinity; the risk of submergence, or combinations

of those (Wassmann et al., 2009). Thus, it is possible to map out the potential growing season for rice

based on climatic suitability parameters (while ignoring other environmental factors such as soil constraints

(Haefele et al., 2014)). However, in many parts of South, South-east and East Asia, where 90% of the world’s

rice is produced, the sub-tropical and tropical temperatures, the abundance of water in the monsoon season

and the increasing reliance on irrigation in the dry season mean that rice can and is grown at almost any

time of year across the region (Boschetti et al., 2015b). Other factors that play a role in the choice of crop

establishment date include labour availability, the level of agricultural mechanization and establishment

method. These mean that crop establishment dates can vary substantially over small distances (Asilo et al.,

2014). Thus, methods for monitoring rice must be able to accommodate and represent a variability in crop

establishment date that is not purely driven by climate.

Where temperature and water availability allow, the introduction of short and medium duration varieties

means that rice can be cropped more than once per year on the same plot of land. Double and triple cropping

of rice accounts for 55 million ha of harvested rice area in countries like India, Bangladesh, Myanmar,
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Thailand, Vietnam, Philippines, Malaysia, Indonesia and China (Dawe et al., 2010) as well as in smaller

areas in Madagascar, Nigeria, Mali, Guinea, Senegal and Côte d’Ivoire (Balasubramanian et al., 2007). Rice

is also cropped in rotation with other cereals (such as wheat or maize), pulses (such as gram or pigeon

pea), oil and vegetable crops, and there are many double and triple cropping combinations depending on

local preferences, markets, input and labour costs, and environmental constraints. Thus, the cropping

intensity of rice in major tropical and subtropical rice growing regions can vary over small geographic areas

independently of the climatically defined length of growing season and methods for monitoring rice must be

able to accommodate and represent this variability too.

These three factors lead to complex spatio-temporal patterns of rice production situations in major rice

growing regions. We argue therefore that there is the need to develop methods that are robust enough to

capture spatio-temporal patterns across a wide range of rice environments. Such information would support

several important research and development needs, such as: better characterization and understanding

of rice crop environments; improved modelling of yields and crop health; better targeted interventions to

increase the productivity, sustainability and profitability of rice production, and; improved modelling of rice

production and production constraints.

1.2. Optical remote sensing based methods of mapping and monitoring rice

Remote sensing based rice mapping has been performed since the late 1980s using single and multitempo-

ral images such as Landsat and MODIS. Rice detection has been further improved by multisource algorithms

that integrate multitemporal (Barbosa et al., 1996), multisensor (Fang et al., 1998) images or GIS informa-

tion (Li et al., 2003). To achieve high accuracy, some methods have also included complex multistep hybrid

classification approaches that optimize the mapping of specific environments (Turner and Congalton, 1998).

Despite the good mapping results provided by image based classifications, these procedures are demanding

and time-consuming in terms of operator intervention, and supervised and unsupervised classification re-

quire training selection or a posteriori labelling, respectively. Moreover, the good results from specific study

sites are not always directly exportable to other contexts and geographic locations.

More robust detection methods with a higher generalization capability have been based on multitemporal

imagery, from both passive and active sensors (e.g., Le Toan et al. (1997)). To guarantee the necessary

frequency of image acquisition, quasi-daily observation acquired from moderate resolution optical data have

been commonly used in two different classification approaches: i) supervised temporal signal analysis (signal

matching) and ii) rule based analysis. An example of the first approach is the rice cropping systems maps

produced by Gumma et al. (2011) for South Asia. The method has generated accurate maps on a wide area,
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however its application to another region would involve another round of time consuming operator analysis

and decision making in the classification, grouping and labelling phase. The second approach defines a

series of detection criteria on the basis of well-known temporal characteristics of rice cultivation. One of

the more cited methods for rice detection belonging to this second approach to classification is the one

proposed by Xiao et al., who used Spot Vegetation (VGT) data (Xiao et al., 2002) and later MODIS data

(Xiao et al., 2005) to map rice flooding and rice cultivated area in China, and South and South-east Asia

(Xiao et al., 2006). The method is based on the detection of agronomic (i.e., deliberate) flooding of the

rice fields before the crop is established and subsequent rapid growth of the crop within a fixed time period

after flooding. Because these two characteristics are common to many rice cultivation practices (with the

exception of upland rice, deep water rice, dry direct-seeded rice and other relatively minor rice ecosystems

or rice management practices), the method has potential for operational monitoring of rice cultivated area

at regional scale. However, demonstrations of this method revealed that false positives can occur when it is

applied in ecosystems different from the ones where it was developed originally (Peng et al., 2011) and when

external knowledge on local crop calendar and agro-practices are not considered (Manfron et al., 2012). In

any case, the above examples do not account for or provide information on variation in growing period,

variation in date of crop establishment and variation in cropping intensity.

Although mapping the extent or area of crops like rice has received a lot of attention, the retrieval of

temporal information has not been adequately investigated despite the fact that many methods rely on the

temporal signal from remotely sensed time series data to separate rice from other land covers. Sakamoto

et al. (2005, 2006) used wavelet analysis to extract seasonality information from multitemporal MODIS

imagery for rice crops in Japan and the Mekong delta. Nguyen et al. (2012) and Asilo et al. (2014) used

labelling and grouping of unsupervised classifications of VGT data in the Mekong delta and MODIS data

in the Philippines, respectively, to generate rice crop calendars. Tornos et al. (2015) studied the temporal

characteristics of rice cropping systems in Spain and demonstrated that time series of vegetation indices can

be used to analyse changes in flooding period (hydro period).

Table 1 provides a comparative view of exemplar rice mapping and monitoring studies. We characterise

them to highlight their contribution to temporal information on rice cropping systems, specifically in pro-

viding information at scale on i) intensity, ii) seasonality and iii) crop duration. We also note if the methods

have been validated against field or high resolution (HR) imagery in multiple environments. Based on our

review of methods and studies, there are several rice (crop) detection methods but none of those that we

are aware of has been validated to be robust for its ability to capture the three temporal aspects of rice
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cultivation (duration, seasonality and cropping intensity) across different environments.

From the summary in Table 1, we argue that a robust method for detection and estimation of these spatio-

temporal characteristics at regional scale should rely on the most common aspects of rice crop cultivation.

Agronomic flooding of the rice field is a unique characteristic that distinguishes rice from other field crops.

Therefore, we start with the assertion that any operational detection method for lowland rice which relies

on the interpretation of optical time series imagery must be robust in detecting agronomic flooding with

low commission and omission errors. The variation across environments in the crop growth rate after

crop establishment should be incorporated into rice detection rules. We assert that this requires a robust

exploitation of crop specific metrics to improve the rice detection capability and reduce the dependency on

locally tuned thresholds. Detection of flooding and increase in post-flooding biomass requires high-frequency

multitemporal data and hence, at the moment, the use of moderate resolution imagery. We assert that when

moderate resolution data are used to study agricultural systems, their most valuable contribution is in the

inter-annual and intra-annual analysis of crop practices and phenology and not as an area estimation method.

Based on these three criteria (robust flood detection, robust rice crop phenology detection and emphasiz-

ing temporal information over area information), we developed a method that is able to detect pixels where

rice is cultivated (one or more times per year) in a robust way. The emphasis is on identifying sufficient

representative samples to further perform time series analysis and retrieve statistically sound and spatially

explicit phenometrics that characterise rice production systems.

1.3. Objectives

The objectives of this research were to develop and assess the performance of a rice crop phenological

detection method based on automatic identification of rice cultivated areas. The method must i) be able

to provide diagnostic information on water management, ii) generate minimal confusion with other crops/-

target, and iii) be able to deal with variation in the start, length and number of seasons while providing

reliable and representative phenological information for each detected season.

To reach these objectives and requirements we developed the PhenoRice algorithm and we performed

a number of tests and experiments using MODIS satellite data as inputs, and used previously published,

high resolution, spatially and temporally explicit data on rice area and seasonality for validation. Unlike

previous studies, we:

1. Assessed PhenoRice’s rice detection capability by comparing our results with high resolution maps

rather than rice harvested area statistics from administrative units;
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2. Demonstrated the detection capability of PhenoRice in different environments, ranging from temperate

to tropical (in both dry and wet seasons);

3. Analysed the performance of PhenoRice in providing multiseason phenological information.

Based on our review of the literature, this is the first time that multiseason rice phenology across different

systems has been detected using remote sensing based information and validated using high resolution data

in different environments.

2. The PhenoRice algorithm: theoretical basis

The PhenoRice algorithm is a new approach for estimating key dates in rice crop cultivation, by analysing

time series of spectral indices (SIs) derived from moderate resolution satellite imagery. It provides a reli-

able estimation of the spatial variability of the dates of crop establishment and flowering over large areas,

irrespective of the characteristics of rice cultivation in different environments, such as crop establishment

method and dates (crop calendar) and cropping intensity.

Development of the algorithm was based on the works of Xiao et al. (2005, 2006), where a rule based

method is used to identify a rice crop when a clear and unambiguous flood condition is detected before

a consistent and rapid vegetation growth. To do this, within PhenoRice a spectral index sensitive to soil

submergence (NDFI – Normalized Difference Flood Index, Boschetti et al. (2014) –) is used to detect

agronomic flooding and a standard vegetation index related to crop biomass, Enhanced Vegetation Index

(EVI – Huete et al. (2002)) used to detect subsequent crop growth and harvesting (Boschetti et al., 2009).

We assume that PhenoRice is suited to situations where rice is transplanted or wet seeded under irrigated

or rainfed conditions, which accounts for the vast majority of rice growing areas (90% of global rice production

– GRiSP (Global Rice Science Partnership) (2013)). We also assume that performance will be limited in rice

growing areas where fields are sloping and where dry seeding is practiced. These areas constitute a small

proportion of the global rice area.

The following sections briefly illustrate the main features of the algorithm and its data requirements.

2.1. Input data

PhenoRice uses time series information derived from MODIS Land Surface Products. In particular:

1. MODIS TERRA and AQUA time series derived from the 250m 16-day composite vegetation index

products (MOD13Q1/MYD13Q1 – Didan (2006)) v005, for the following parameters:

a) EVI;
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b) NDFI, computed from red (b1) and SWIR (b7) reflectances as (b1−b7)
(b1+b7) ;

c) Blue band Reflectance (b3);

d) DOY (Day of The Year) of Composite;

e) Usefulness Index and Pixel Reliability quality indicators.

Since MOD13Q1 and MYD13Q1 are based on compositing periods shifted by 8 days between each

other, the time series derived from the two 16-day products has a theoretical 8 day frequency.

2. MODIS Terra daytime Land Surface Temperature (LST) time series, derived from the TERRA 1 km

8-Day LST product (MOD11A2 – Wan (2006)), resampled to 250m spatial resolution. This represents

the average values of clear-sky LSTs observed from daytime acquisitions over an 8-day period.

An additional input, a mask file, can be provided to identify pixels that should not be processed. This

mask can be derived from recent land cover maps highlighting agricultural areas, though more complex

masks can be derived by exploiting expert knowledge of the typical characteristics of the rice-cultivated

areas in the region of interest (e.g. masks based on topographical attributes such as altitude or slope and

masks excluding areas known to be permanently cultivated with other crops).

2.2. Algorithm description

For each MODIS pixel (except those excluded by the mask), PhenoRice determines if it has a high

probability of belonging to a rice area, estimates the rice crop establishment and flowering dates, and then

computes the combined length of the vegetative and reproductive phases as the difference between these

two dates (i.e. from flowering to crop establishment). We focus, therefore, on the estimation of crop

stage occurrence related to the location-specific management and genetics of the rice crop. The EVI time

series of each pixel is smoothed using a Savitzky-Golay two-iteration method to reduce noise due to cloud

contamination or variable acquisition angles. The smoothing method assigns weights to the EVI values

according to estimated data quality (Boschetti et al., 2015b) based on information contained in the Pixel

Reliability, Usefulness Index and blue reflectance time series. Additionally, the smoothing method uses the

true dates of acquisition for each pixel (as reported in the “DOY of composite” MODIS band) to improve

adherence of the smoothed time series to the true temporal changes in ground reflectance. The resulting

smoothed time series is adapted to the upper envelope of the original curve.

The smoothed EVI signal is analysed to identify all local minima and maxima within the time series.

Following Manfron et al. (2012), these minima and maxima are analysed on the basis of agronomic criteria
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to determine the presence of a ”rice cycle signal” in the time series. Pixels that meet these criteria are

labelled as rice, and their rice crop establishment and rice crop flowering dates are estimated. PhenoRice

can detect multiple growing seasons for a pixel within the analysed time series. This is achieved by splitting

the time series into as many as four periods, each representing a possible period when rice flowering may

occur, and conducting a separate analysis on each one. These periods are set by default to the four calendar

seasons, but the starting date and duration of each can be adjusted by the user.

For each period, each pixel is analysed as follows:

1. Check if the pixel belongs to a rice-cultivated area: Whether the pixel belongs to a rice

cultivated area during the selected period is checked using the following procedure:

a) The average EVI value within the time period must be below a specified threshold (EV Iavg th).

This criterion reduces misclassification problems with evergreen forests;

b) The maxima of the EVI curve within the time period are checked using the following criteria:

� EVI of the maximum is above a specified threshold (EV Imax th);

� A consistent increase (decrease) in EVI is observed before (after) the maximum. In particu-

lar, the existence of a sequence of at least three positive (negative) EVI first-derivatives in a

temporal window of five periods centred on the maximum is checked;

If more than one maximum is found, the one with the higher EVI value is kept, and assumed to

be a potential crop flowering point. This criterion allows local maxima, due to residual noise in

the smoothed time series, to be discarded. If no suitable maxima are found, the pixel is labelled as

non-rice and further processing is skipped.

c) The minima of the curve are evaluated against the following criteria:

� The time difference between the date of the minimum and that of the maximum (∆t) identified

in b) must fall within a specified interval [∆tmin,∆tmax] based on prior knowledge of the

dominant rice varieties and the typical combined length of the vegetative and reproductive

phases in the analysed area;

� Meteorological conditions on the day of the minimum are favourable for rice crop establishment

based on a MODIS LST value above a specified threshold (LSTth);

� The minimum is below a specified EVI threshold (EV Imin th);
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� A flood signal is detected within a time window of specified width (winfl) centred on the

minimum, based on the value of the NDFI index. The criteria used for flood identification is

NDFI ≥ 0 (Boschetti et al., 2014);

� A consistent increase in EVI is observed after the minimum. In particular, the existence of a

sequence of at least three positive EVI first-derivatives in a temporal window of five periods is

checked;

� The maximum identified in b) is followed by a fast decrease in EVI, due to crop senescence

and harvesting. In particular, the algorithm checks if EVI decreases by more than decrth %

of the amplitude of the min-max range in a time window of specified width after the maxima

(windecr);

If no minimum satisfies all of the above-mentioned requirements, the pixel is labelled as non-rice in

the period and further analysis is skipped.

2. Estimate crop establishment and flowering dates: The crop establishment date corresponds

to the date of the latest retained minimum (that is, the one closest to the retained maximum). The

flowering date, on the other hand, corresponds to the mid-point date of the period during which the

EVI smoothed signal remains above the 90th percentile of the min-max range. A minimum can however

satisfy all criteria for local maxima positioned in two adjacent time periods. In this case, the stronger

of the two maxima is considered for computing the flowering date. Choosing the higher maximum

reduces the chance of misidentifying peaks in vegetation signal as rice. Such peaks can be caused by

subsequent crops (such as short duration pulses grown on residual moisture immediately after the rice

crop), ratooning (where the rice stubble is left to grow again) or weeds (where the field is left fallow

for some period after the rice crop).

Crop intensity is finally computed as the number of periods for which valid establishment dates are

identified. A flow chart depicting the main phases of the pixel-based processing is shown in Figure 1.
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Figure 1: Flowchart of the pixel-based processing scheme of the PhenoRice algorithm
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2.3. Software implementation

PhenoRice has been implemented as an IDL (Interactive Data Language) v.8.3 application. The appli-

cation allows the operator to modify the settings and thresholds used in the different detection criteria. In

particular the number of periods to be considered in the analysis and their temporal limits can be changed

to cope with the characteristics of rice cultivation systems in different areas. For example, in temperate

areas (where rice is usually grown in spring/summer and only one rice season is possible), PhenoRice can

be run by considering a single time period, thus considerably speeding-up computation and avoiding possi-

ble misclassification in seasons in which rice establishment cannot happen. Conversely, in subtropical and

tropical areas (where multiple rice seasons may be present in the same year), the operator can set multiple

periods that are roughly centred on the known flowering periods of each season, allowing for a more efficient

detection of the different seasons.

The application uses MODIS time series automatically produced by the MODIStsp ”R” package for

MODIS data download and pre-processing (Busetto and Ranghetti, 2016). It automatically detects which

dates of the MODIS time series are required to apply PhenoRice on the basis of i) processing parameters

specified by the user, and ii) the year of interest for the analysis, and automatically creates all the required

multitemporal input files. In particular, the length of the time series required for PhenoRice is governed by

i) the number and length of periods to be analysed, and ii) the width of the ∆tmax (i.e., the upper limit of

the ∆t processing parameter) and windecr windows. Figure 2 shows an example of the data requirements

for a common scenario, in which a solar year of interest is divided into four equal periods: setting ∆tmax

and windecr to the values used in this study requires a time series that spans from the middle of August of

the preceding year until the middle of March of the following year.

Figure 2: Schematic representation of input data requirements for a common analysis scenario: analysis conducted on a solar
year, considering four equally long periods (the 24 additional days included at the beginning and end of the time series are
required to accommodate the edges of the Savitzky-Golay window)
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3. Materials and methods

3.1. Case studies and datasets

PhenoRice was applied in three different case study areas in Italy, India and the Philippines (Figure 3)

to demonstrate its ability to correctly identify the main rice cultivation areas and to accurately estimate

crop establishment and flowering dates in different environments and management conditions. These rice-

producing areas were selected for two reasons. Firstly, they represent some of the most common rice

production situations (Dawe et al., 2010). They are characterised by different climates (temperate and

tropical in dry and wet season), different rice cropping methods (i.e., direct seeding in Italy, transplanting

in India and Philippines) and different dominant rice crop intensities (rice-fallow in Italy, rice-other in India

and rice-rice in Philippines). Secondly, comparable, high-quality and high spatial resolution reference data

(based on remote sensing and field observations) for rice crop area and establishment dates were available

for each site.

3.1.1. Case Study 1: Northern Italy (ITA)

The first case study area is located in the Po River alluvial plain in Northern Italy and covers the main

Italian rice cultivation area (Bocchi et al., 2003). The rice area is around 210,000 ha and accounts for 90%

of paddy rice cultivation in Italy and about 50% of total European rice production (FAO, 2016), making

it the most important rice growing area in Europe. Climate is classified as subcontinental temperate, with

average annual temperature of 12-14 °C and rainfall ranging from 600 to 1,400 mm y-1. Rice is cultivated in

irrigated conditions and the crop is established by seeding, either broadcast on submerged soils or directly

in dry soils (the latter particularly in South-eastern areas) that are periodically irrigated until the unfolding

of 2-4 leaves and continuously flooded thereafter.

Depending on the variety, rice is generally planted between early/mid-April and late May, and harvested

in October. The area is located at the northern limit of the natural rice cultivation zone and is characterised

by low temperature at the extremities of the crop cycle, irregular solar radiation and harvests frequently

hindered by rain. Specific varieties for temperate climate have been bred, with very good cold tolerance

at all growth stages and good resistance to the main pests and diseases of the region (GRiSP (Global

Rice Science Partnership), 2016). Both Indica and Japonica group varieties are cultivated with either a

medium (120-130 days; e.g. Gladio, Thaibonet, Selenio, Loto, etc.) or long growing cycle (> 150 days;

e.g. Carnaroli, Volano, Baldo, etc.) (For details, see Table 1 in Boschetti et al. (2009) and Confalonieri

and Bocchi (2005)). The average farm size is about 50 ha, usually divided into relatively small fields to

better manage the water presence, to cultivate different variety for different markets request and to minimize
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Figure 3: Location and main characteristics of the three case study areas

potential negative seasonal effects (CREA, 2015; Ente Nazionale Risi, 2016). Within the study area, field

size range from 0.7 to 7 ha, with an average of around 3 ha.

Validation datasets for the ITA study site came from two sources. A reference rice map was created on

the basis of 10 and 20 m spatial resolution land cover maps provided by the Lombardy (ERSAF, 2013) and

Piedmont (Regione Piemonte, 2011) regional authorities. In both maps, information about the location of

rice areas was derived from annual official declarations provided by farmers about the crop cultivated in

each of their parcels. Crop establishment date validation data were derived from weekly field observations
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conducted in 2013 within six study sites of around 1000 hectares each, located in the provinces of Milano,

Pavia and Novara (see Ranghetti et al. (2016) for details). Field surveys were conducted in the different sites

from the 15th of April (start of flooding) to the 7th of July 2013 (around maximum tillering) and the field

condition and the presence/absence of emerged rice crops in each rice field was recorded. The sowing date

of each field was then estimated as the mid-point between the date of the last survey with no visible rice

plants and the first survey with visible rice plants, minus 10 days (to account for the typical delay between

sowing and emergence for Italian rice varieties).

3.1.2. Case Study 2: Cauvery delta - India (IND)

The second study area is located in the Cauvery delta of Tamil Nadu state in south-eastern India. This

area is known as the “Rice Bowl” of Tamil Nadu and is part of the “Granary of South India”, as it contains

the rice growing districts of Ariyalur, Nagapattinam, Thanjavur and Thiruvarur that form the major source

of food grain supply of the state. Around 520,000 ha of rice are grown in these four districts which represents

30% of the state total and rice is by far the most dominant crop, followed by pulses. Climate is classified

as tropical savanna, with an average temperature around 29°C and average rainfall around 938 mm, mostly

concentrated in the June-September (South-west monsoon) and October-December (North-east monsoon)

periods.

Rice is mostly cultivated in irrigated conditions and crop establishment is conducted mostly by trans-

planting with some direct seeding. A semi dry system is practiced in some parts of Thiruvarur where rice

is seeded in ploughed dry soils, with water applied later in the season from irrigation or monsoon rains.

The main rice cultivating period is the samba season, running from August to December with a late samba

season or thaladi season from October to January. Most areas are characterised by a single rice season

where medium- and long-duration (from 135 to 160 days) varieties are typical (e.g., CR1009, BPT5204 and

ADT (R) 50). Other crops such as pulses are grown on residual moisture between January and March

and these rice-pulse systems are the dominant cropping system in the delta. Rice can be grown in two

other minor seasons; the navarai (from January/February to April/May) and kuruvai (from June/July to

September/October) seasons when short duration varieties are grown, hence, rice-rice, rice-pulse-rice and

rice-rice-rice systems are also present but are limited to small areas where there is sufficient irrigation. The

latest agricultural census of 2010-2011 showed that the average size of land holdings were 0.58 ha, 0.86 ha,

0.72 ha and 0.92 ha in Ariyalur, Nagapattinam, Thanjavur and Thiruvarur respectively, with a state wide

average of 0.80 ha (Department of Evaluation and Applied Research (DEAR), 2014).

Validation datasets available for the IND study area are based on 3m resolution maps of rice area and
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crop establishment dates for the samba season, covering an area of about 160000 ha in the delta region, based

on an analysis of multi-temporal COSMO-SkyMed (CSK) X-band SAR (Synthetic Aperture Radar) Single

Look Complex (SLC) data obtained from the Italian Space Agency (ASI/e-GEOS). A total of 9 images

acquired at 16-day interval between 13/08/2013 and 26/12/2013 were used for both rice crop detection and

crop establishment date estimation, following the method described in Pazhanivelan et al. (2015) and Nelson

et al. (2014). Validation of the rice area map against field observations resulted in an overall accuracy 91%,

with a kappa coefficient of 0.73.

3.1.3. Case Study 3: Nueva Ecija and Pangasinan – Philippines (PHL)

The third study area is within the provinces of Nueva Ecija and Pangasinan in Central Luzon, Philippines.

These are respectively the first and third largest rice producing provinces in the country, mainly due to the

highly suitable alluvial plains in both provinces. The climate in Nueva Ecija and Pangasinan has two

pronounced seasons, dry (DS) from November to April and wet (WS) for the rest of the year, with an

average annual temperature of around 27°C and average annual rainfall of around 1900 mm.

About 88% of the rice area in Nueva Ecija is irrigated whereas in Pangasinan, it is only about 69%.

Most areas are characterised by a double rice crop season due to the extensive irrigation systems. More area

is planted to rice in the WS, than the DS since rice is also grown in rainfed conditions in the WS (WS rice

area in Nueva Ecija and Pangasinan ≈ 357,430 ha; DS rice areas in Nueva Ecija and Pangasinan ≈ 211,103

ha (Philippines Statistics Authority, 2016). In the WS, rice is generally planted in June/July and harvested

in September/October, while in the DS it is planted in December/January and harvested in April. Most

rice farmers practice direct-seeding during the DS and transplanting in the WS. Some areas of the irrigation

system, however, report three crops per year, while the smaller rainfed areas can grow only one rice season

in the WS. The main cultivated varieties are medium duration (about 110-120 days) such as NSIC Rc 222

(Laborte et al., 2015). The area is dominated by rice and farms are relatively small. A survey of 95 farm

households in Central Luzon in 2011-2012 showed that the average farm size was 1.94 ha, with each farm

averaging 1.22 ha and 1.32 ha of rice planted in the wet and dry seasons respectively (Moya et al., 2015).

Validation datasets for the PHL study area were derived from 18.5m (WS) and 30m (DS) resolution maps

of rice area and crop establishment dates for Nueva Ecija and Pangasinan based on an analysis of multi-

temporal COSMO-SkyMed (CSK) X-band SAR ScanSAR Huge Region imagery obtained from the Italian

Space Agency (ASI/e-GEOS), and Terra SAR-X (TSX) ScanSAR imagery. Seven CSK images acquired at

16-day interval between 06/12/2012 and 13/04/2013 and 10 TSX images acquired at 11-day interval between

25/05/2013 and 23/09/2013 (although with a one-month acquisition gap in August) were used for rice crop
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detection and rice crop establishment date estimation in the two seasons. Validation of the rice crop map

against field observations revealed an overall accuracy of 90%, with a kappa coefficient of 0.72 in detecting

areas cultivated to rice in at least one of the seasons. Validation of the crop establishment dates for the

DS season showed a strong relationship between the TSX-derived dates and the field-observed transplanting

dates (r2 = 0.87; Root Mean Square Error (RMSE = 9 days – Asilo et al. (2014)). More detailed information

about the datasets used for the validation of crop establishment is reported in Supplementary materials –

Table S2.

3.2. Data processing

PhenoRice was applied in the three case study areas for the rice seasons for which validation datasets

described in Section 2 were available, that is 2013 in ITA, 2013-2014 IND and 2012-2013 in PHL. To verify

its overall flexibility in coping with different rice cultivation schemes only small changes were made to the

algorithms’ parameters for the three cases. The main changes were the adjustment of the starting point

of the four analysed trimesters to facilitate detection of the main rice cultivation seasons, and the use of

a slightly higher EV Imin th in IND and PHL. Adjusting the time periods according to study area allowed

for a more meaningful analysis, since considering a “fixed” January to December time frame would have

led to “winter” rice seasons in PHL and IND being artificially split between two different calendar years of

analysis. By reasonably anticipating the start of the first period, it was possible to correctly detect all rice

seasons for which harvesting occurred within the same “rice cultivation year”. The adjustment of EV Imin th

was aimed at improving rice detection in sites where a second/third rice crop was present and where rainfed

rice was known to be present (Table 2).

Table 2: PhenoRice processing parameters used in the three case study areas

ITA IND PHL

Year 2013 2013 - 2014 2012 - 2013

Periods
01/01/12 - 31/03/13 01/04/13

- 30/06/13 01/07/13 -
30/09/13 01/10/13 - 31/12/13

01/10/13 - 31/12/13 01/01/14
- 31/03/14 01/04/14 -

30/06/14 01/07/14 - 30/09/14

01/12/12 - 28/02/13 01/03/13
- 30/05/13 01/06/13 -

30/08/13 01/09/13 - 31/10/13

EV Imax th 0.4 0.4 0.4
∆tmin [days] 40 40 40
∆tmax [days] 114 114 114
LSTth [◦C] 15 15 15
EV Imin th 0.25 0.3 0.3
winfl [days] 16 16 16
windecr [days] 80 80 80
decrth [%] 50 50 50

A simple mask derived by combining publicly available datasets was used in the three areas. In particular,
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the Global Water/Land mask (http://glcf.umd.edu/data/watermask/) was used to mask out seas and

water bodies and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) product

at 90m spatial resolution was used to mask out areas above 2000m a.s.l. and rugged/highly sloped terrains.

This slope criterion was achieved by setting a threshold on the standard deviation of elevation within a 5x5

kernel. The mask reduced processing time and excluded areas with very low probabilities of belonging to

rice cultivations.

Figure 4 shows exemplar plots of PhenoRice estimates of rice phenological dates (crop establishment

and flowering are shown by the orange and green dotted lines respectively) based on the temporal patterns

of NDFI (blue) and smoothed EVI (red) for different cropping systems in the three study areas. It also

shows the variability in cropping systems across and within the sites. The ITA case shows one rice season

from June to October and low EVI in the rest of the season suggesting bare soil, flooded fields or fallow

conditions. Four examples are given in IND (from top to bottom): i) the samba rice season with rice grown

from September to January and fallow fields for the rest of the year; ii) the samba rice season followed

by another crop, probably pulses (the most dominant cropping system in the region); iii) two rice crops,

samba/thaladi (Oct-Jan) and kuruvai (May-Aug), possibly separated by a pulse crop (Feb-Apr), and iv)

three rice seasons; samba/thaladi, late navarai and kuruvai. These last two examples occur more rarely.

Four examples are also given in the PHL site: i) a single rice season in the DS with no crop in the WS due

to excessive stagnant water (strong NDFI signal); ii) a single rice season in the WS preceded by another

crop (possibly maize or vegetables) in the DS, iii) a double rice season, which is the dominant cropping

system (rice stubble/weeds are evident after the DS rice crop); iv) a triple rice season where an early and

late WS crops are present as well as a DS crop (Asilo et al., 2014).

3.3. Post-processing and validation

3.3.1. Assessment of PhenoRice rice detection accuracy

First we assessed PhenoRice’s performance in correctly identifying rice cultivated areas using the high

resolution maps available in the three areas (section 3.1). Although PhenoRice is not per-se an area estima-

tion method, it must correctly identify a representative sample of the rice cultivated area to allow accurate

characterization of seasonality and cropping intensity of the analyzed rice systems. We performed a “local

product accuracy” assessment, and a “regional product accuracy and precision” assessment following the

validation of coarse resolution burnt area maps method proposed by Roy and Boschetti (2009).

Local product accuracy was assessed by first resampling the MODIS-derived rice maps to the resolution

and projection of the available reference maps, and then evaluating the accuracy using a standard confusion
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Figure 4: Example of PhenoRice results for example pixels of the three Case Study areas.

matrix approach, thus evaluating metrics such as the overall accuracy (OA) and the commission and omission

errors (CE and OE) for the rice class. Additionally, an analysis was performed to evaluate the effect of target

fragmentation/homogeneity on PhenoRice detection. This was accomplished by evaluating the algorithm’s

rice detection rate as a function of rice fractional cover (from the high resolution maps) within the MODIS

pixels.
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The regional product accuracy assessment was conducted by overlaying a 9 x 9 MODIS pixel fishnet

(approximately 2 x 2 km) over the study site and recording the rice area estimated by MODIS and the high

resolution maps within each grid cell. The relationship between the two rice area estimates was evaluated

with standard linear regression analysis metrics (e.g., slope and intercept of the regression, r2, RMSE).

This assessment method reduces the effect of factors such as the difference in resolution between the two data

sets, low resolution bias (Boschetti et al., 2004), coregistration problems and point spread function (PSF)

effects (Duveiller et al., 2011). Given that PhenoRice aims to detect a representative sample of the rice

growing area as opposed to a complete enumeration of the rice area, this regional approach is considered to

be a more robust and appropriate assessment than local product accuracy for assessing PhenoRice’s ability

to detect a representative sample of the rice growing area on a regional scale.

3.3.2. Assessment of PhenoRice’s estimation of crop establishment and flowering dates

The accuracy of crop establishment date detection was analysed on the basis of both expert knowledge

about the cropping systems under analysis, and comparison with available reference data. In particular, a

qualitative evaluation was first of all performed by analysing PhenoRice’s estimates with reference to the

existing knowledge about the characteristics of each study area (e.g., typical crop calendars and crop intensity

as reported in section 3.1). A quantitative analysis of the accuracy of the rice crop establishment estimates

was then conducted by comparing the PhenoRice date estimates to the high resolution crop establishment

maps (section 3.1), both averaged on the 2 x 2 km grid to reduce the effects of the different resolution of

the maps on accuracy evaluation.

In the second analysis, aggregation of the high resolution maps to the 2 x 2 km grids was conducted

considering only high resolution pixels falling within MODIS pixels for which rice fractional cover was greater

than 75%. This allowed us to account for the unavoidable lower performance of PhenoRice in rice detection

in fragmented rice cultivation areas. In the case of PHL and IND we only considered MODIS pixels with

estimated establishment dates that fell within the range of the dates that could be derived from the SAR

time series for each site. This avoided the inclusion of areas sown in periods outside the SAR time series,

ensuring comparable temporal information from both sources. A regression analysis was then performed

and standard accuracy metrics (r2, Mean Error (ME), Mean Absolute Error (MAE) and RMSE) were

computed to assess the precision and accuracy of MODIS date of establishment estimates. In PHL, the

analysis was conducted separately for DS and WS, whereas only one rice season was considered in the ITA

and IND sites.
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4. Results and discussion

4.1. Detection of rice cultivated area and number of rice seasons

The number of rice seasons detected for each pixel (Figure 5) highlights the differences in rice crop inten-

sity and their spatial patterns between the three sites. Across all three sites there was a good correspondence

between the spatial patterns of the observed and expected dominant cropping systems.

In ITA, rice is produced once per year in the summer season. In IND, most of the rice growing area

has a single crop of rice per year, with some double rice areas mainly along the Kollidam River, and a few

small patches of triple rice area concentrated in Thanjavur wherever ground water resources are plentiful.

In PHL, double rice is the dominant cropping system, specifically in the irrigated areas of Nueva Ecija

province. Single rice areas were more prominent in Pangasinan where a higher proportion of rice areas are

rainfed. The algorithm detected triple rice areas in Cabanatuan municipality and this was confirmed by

municipal agricultural officers in the area where a “Quick Turnaround” program of the National Irrigation

Administration has been ongoing since 2012, meaning that no fallow period is implemented. Some farmers

in the municipality also practiced ratooning where the rice stubble is left standing to sprout or ratoon

and produce another smaller harvest in 65% of the time of the main crop and with less labour (personal

communication, IRRI 2016).

Figure 5: Rice detection in the three case study areas: ITA (left), IND (centre) and PHL (right). Single, double and triple
seasons are represented in green, blue and red respectively. Grey areas highlight the extent of the high resolution validation
map.

4.1.1. Analysis of rice detection accuracy

Table 3 reports the results of the analysis of PhenoRice local product accuracy analysis for rice mapping

(section 3.3.1) for the three case study areas. Overall Accuracy (OA) was greater than 80% for all test cases
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except IND (71%), with omission errors for the rice class in the range of 25 to 40%, and commission errors

in the range of 20 to 35%.

Table 3: Results of PhenoRice local accuracy for rice detection. Overall (OA), Producer’s (PA) and User’s Accuracy (UA)
were derived from comparison of the HR reference maps with PhenoRice maps resampled to the same resolution.

ITA IND PHL
Summer season Samba season Wet season Dry season

Overall Accuracy 80 71 80 80
Producer’s Accuracy rice 70 60 60 75
User’s Accuracy rice 65 80 75 65

Although these errors may appear high, they need to be evaluated in the context of using moderate

resolution MODIS images in these study sites. There is an unavoidable underestimation of area in fragmented

agro-ecosystems due to the mixed pixel effect causing contamination of the “rice signal” and therefore a

reduction in detection capabilities. There is also a tendency towards overestimation in the main rice areas,

due to the fact that a MODIS-based analysis cannot recognize small non-rice areas (low resolution bias

– Boschetti et al. (2004)). These results highlight the challenge of assessing the accuracy of moderate

resolution maps in rice growing areas as well as in making direct comparison between maps derived from

high and coarse resolution satellite imagery.

A better understanding of the algorithm’s performance in relation to target characteristics can be derived

from the results of the analysis of i) the algorithm’s detection rate as a function of rice fractional cover within

MODIS pixels (see Figure S1 for details) together with ii) the analysis of Pareto boundaries (Boschetti et al.,

2004) for the four seasons across the three study sites as an indicator of site fragmentation (Leroux et al.,

2014). The analysis shows that while the omission error for mixed rice-non rice pixels was quite high, and

higher still for the fragmented IND site, (see Figure S2 for details), the algorithm detection performance was

above 70% in pixels with rice fractional cover above 70%. This suggests that PhenoRice is able to identify

the main rice cultivation areas, which is essential for selecting a representative sample of the rice systems

and subsequently analysing their cropping dynamics.

A more focused and spatially explicit analysis of PhenoRice’s rice detection capabilities at a regional

scale can be seen in the regional product accuracy assessment (Figure 6).

There are strong, positive, linear relationships between the high resolution map rice area and the Phe-

noRice detected rice area in all four cases (r2 between 0.75 and 0.92). The slope of the linear regression

shows an underestimation of between 20 and 30%, with the exception of the dry season in PHL, where

PhenoRice tends to overestimate rice area.
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Figure 6: Comparison between reference and PhenoRice rice area, aggregated on a 2 x 2 km regular grid. ITA (a), IND (b),
PHL – wet season (c) and PHL – dry season (d)
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In ITA, the rice detection performance was very good (r2 = 0.89). This is due to the high quality of

the MODIS signal (low levels of cloud contamination, see Figure S3) in summer over the Po Plain, the

clear contrast between rice flooded fields and the surrounding environment in spring, and to the relatively

low fragmentation of this intensive rice cultivated area, as confirmed by the Pareto boundary analysis (see

Figure S2). Underestimation of rice area occurred mainly in the Eastern part of the study area (Pavia

province), where sowing of rice in dry-soil conditions is becoming a common practice (up to 30% of the

area in 2015 – Ente Nazionale Risi (2016)), and where a more fragmented agro-landscape is typical due to

the higher presence of other summer crops such as corn and soybean. Some overestimation occurred in the

north-eastern part (Milano and Lodi provinces) possibly due to the atypically strong and continuous rain

events in the 2013 spring season during the sowing period (Camera di Commercio di Pavia, 2013). These

anomalous rain events delayed rice sowing (Boschetti et al. (2015a); see Figure S6 for details) and led to

flooding of corn fields that could have been misdetected as rice, thus increasing the commission error.

Rice detection performance in IND showed an underestimation of the area. This relates to the charac-

teristics of the case study area, which has higher fragmentation than ITA and PHL (see Figure S2). There

are few samples in the reference data set for IND where the entire 2 x 2 km cell is fully covered by rice (16%

and 2% for rice presence greater than 90% and 100% respectively).

Results in the PHL study area showed contrasting results in the DS and WS. In the DS, PhenoRice

performed very well in identifying the homogeneous irrigated rice areas thanks to the strong flooding signal.

This good performance can be attributed to the medium and large scale irrigation systems and since there

is no natural flooding and little moisture due to rain in the surrounding non-irrigated areas. Thus there

is a higher contrast between neighbouring wet and dry areas (Gond et al., 2004). There is also very little

fragmentation in the PHL–DS (Figure S2) and levels of cloud contamination are typically low (Figure S3).

Detection of rice areas in the WS was affected by persistent cloud cover during the monsoon which reduced

the overall quality of the MODIS data (Figure S3). In addition, some rice areas are grown under rainfed

conditions (in particular in Pangasinan province) which increased the difficulty in detecting the “rice signal”

leading to underestimation (Figure 6).

In summary, these results confirm that PhenoRice performs satisfactorily in accurately identifying a

representative and robust sample of the rice-cultivated area under different environmental and management

conditions, including tropical areas where cloud contamination impacts on data quality. The performance

of the algorithm also matched expectations given the prior, expert local knowledge of the rice systems.
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4.2. Analysis of spatially-explicit information on crop dynamics

Having demonstrated that PhenoRice has captured a representative sample of pixels within the rice

growing areas, the EVI and NDFI time series of each rice pixel were analysed to estimate the timing of rice

crop establishment (sowing or transplanting).

4.2.1. Crop establishment mapping and validation

Figure 7 shows the maps of crop establishment dates (sowing in ITA and sowing/transplanting in IND

and PHL sites) for the first and second detected seasons. The maps highlight clear spatial patterns in rice

crop practices in the three study areas that are in agreement with the known crop practices and variety

distribution.

In ITA (Figure 7a), sowing dates typically exhibit a north-west to south-east gradient due to differences

both in water availability and release dates (Ranghetti et al., 2016), and in cultivated varieties. While

the western part is dominated by traditional varieties with earlier sowing, the eastern part is characterised

by shorter duration varieties that are sown up to the end of May (Boschetti et al., 2009). In IND, the

crop establishment period of the main season (Figure 7b) ranges from August until October representing

the samba and late-samba (thaladi) seasons, respectively. Areas with two rice seasons show the second

(navarai) season starting mainly in February following the first one in October (Figure 7c). Areas with

three rice seasons are too small to describe reliably. In PHL, crop establishment in the DS (Figure 7d)

shows two clear spatial clusters with transplanting occurring earlier in the south (December) than in the

north (January - February). This is reversed in the WS where crop establishment ranges between June and

August (Figure 7e). The identified spatial variability in DS was found to be directly related to the water

release dates in the different irrigation zones of Nueva Ecjia and Pangasinan (IRRI personal communication,

2016 – data not shown).

Figure 8 provides a comparison between establishment dates estimated from PhenoRice and correspond-

ing high-resolution maps (after aggregation to a 2 x 2 km grid). The data from the three sites are ordered

according to their date of occurrence between December 2012 and November 2013. Parameters from a linear

regression analysis between PhenoRice dates and reference establishment dates are shown in the top left

box (slope, intercept and r2), as well as the estimation error metrics Mean Error (ME) and Mean Absolute

Error (MAE). Overall the PhenoRice establishment dates for the three sites are in very close agreement

with the reference data (r2 = 0.98, ME = 4.07 days, MAE = 9.95 days) and the relationship between

estimated and reference dates is statistically significant (p < 0.01).

Across all sites, MAE was less than 10 days, with values below 6 days for ITA and PHL–DS, and around
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Figure 8: PhenoRice crop establishment dates vs reference crop establishment dates. Black and red dashed lines are the 1:1 and
overall linear regression line. Dashed cyan lines are the linear regression lines for the different countries and seasons. Accuracy
indicators are reported in the top left box in the form of parameters of the regression lines, r2, mean (ME) and mean absolute
(MAE) estimation errors.

12 days for IND and PHL–WS. This suggests a higher accuracy of PhenoRice in irrigated rice areas/seasons,

where the flooding and subsequent rice growth signals are more clearly identifiable. Accuracy in rice areas

with mixed rainfed/irrigated growing conditions such as IND and PHL–WS, where quality of the MODIS

signal is also reduced by the frequently cloudy conditions (Figure S3), is lower although still satisfactory.

Figure S4 shows a visual comparison of establishment date estimates between HR and PhenoRice maps in

PHL for both dry and wet season.

Although our results are internally encouraging, we also made a qualitative external assessment against

the few studies that compare crop establishment dates from moderate resolution remote sensing data and

field observations. These studies consistently obtained similar or poorer results to the ones we report here.

For example, Chumkesornkulkit et al. (2013) reported errors of less than 16 days, in the estimation of

establishment dates for irrigated rice areas in Thailand, in 75%, 83% and 27% of cases for single, double

and triple rice season respectively. Suwannachatkul et al. (2014) reported MAE of around 12 days in the

estimation of rice establishment dates for both irrigated and rainfed rice areas in Thailand. Sakamoto et al.

(2005) reported RMSEs of around 12 days in the estimation of establishment dates in Japan. In all three

examples the analysis was carried out on one specific rice crop environment with fewer validation data
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Figure 9: Distribution of crop establishment dates (left panel), flowering dates (centre panel) dates and the combined length of
the vegetative and reproductive phases (sowing to flowering period – right panel) for ITA, IND and PHL (from top to bottom).
Average air temperature (red dotted line) and average total monthly precipitation (blue dotted line) derived from WorldClim
data are also shown in the left and centre panels.

points than our study. The ability of PhenoRice to perform at least as well as other studies across a range

of environments suggests that PhenoRice has the potential to be applied over large extents for rice crop

establishment date mapping.

4.2.2. Analysis of rice crop dynamics in the study areas

Figure 9 shows the frequency histograms of estimated crop establishment dates, flowering dates and the

combined length of the vegetative and reproductive phases – from sowing/transplanting to flowering – as

well as average monthly air temperature and precipitation derived from WorldClim data (Hijmans et al.,

2005).

In ITA, a single summer crop signal is evident with a unimodal but broad distribution of establishment

dates, 90% of which are between the middle of April and the end of May. The variability is mostly due to

the cultivation of rice varieties with very different growth durations across the Piedmont (West) - Lombardy

(East) area (from 120 to up to more than 160 days). Earlier sowing is commonly associated with traditional
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Japonica long duration varieties (e.g., Carnaroli, Volano, etc.) while medium duration ones (e.g., Indica

Gladio, Thaibonet, and Japonica Selenio, Loto) are sown in mid-late May. The flowering dates show a much

narrower distribution, with 90% of the flowering dates occurring in a 20 days period between the end of July

and the middle of August. This highlights how rice cultivation in Italy is planned to efficiently exploit the

short favourable growth period for rice. Before April, the air temperature is too low for sowing. Similarly,

low temperatures and solar radiation in late summer may hamper rice maturation. Farmers sow different

varieties at different times so that peak flowering is reached around August, to take advantage of the best

meteorological conditions for efficient grain filling (see additional analysis in Figure S4). Rice has a longer

vegetative phase in this temperate climate than in the tropical sites (Figure 9 – right panel). In general,

despite Italian varieties being selected for their adaptation to temperate climates, the low spring temperature

means a slower growth of the rice plant (fewer growing degree days) and a longer season. Furthermore,

the rice crop is direct seeded so plants are in the field for around 20 days longer than a transplanted rice

seedling. Finally the Italian rice market and cuisine is still largely based on use of traditional longer duration

varieties. This is a good example of how management practices and market preferences combine with climate

to determine the local rice cultivation practices.

In IND, rice is established in up to three seasons, with peak establishment dates in October (samba/late-

samba season), February (navarai season) and July (kuruvai season) due to the presence of favourable

weather conditions for rice cultivation for the entire year. The frequency histograms show that the samba

season is by far the largest of the three. Systems with two rice seasons show the occurrence of the second

rice season mainly in February/March (Figure 8). The estimated combined length of the vegetative and re-

productive phases in the samba season is in agreement with the known agro-practices and varieties. Medium

and long-duration varieties, such as CR1009, BPT5204 and ADT(R)50, are mainly grown, with durations

from 135 to 160 days though shorter duration varieties are also grown, especially where three crops of rice

are grown per year (Nelson et al., 2014). The shorter length of vegetative season for IND (and PHL) with

respect to ITA can be related to the transplanting of seedlings that are grown for different lengths of time

in the nursery. Traditional varieties can be transplanted between 30 to 45 days after seeding while modern

varieties can be transplanted within 15-25 days or less if mechanically transplanted.

The PHL site shows a bimodal distribution of establishment dates related to the two main rice seasons.

The large spread of estimated dates within each season reflects the corresponding spatial variability of crop

establishment dates. In particular, both WS and DS frequency histograms show two peaks corresponding

to early and late establishment. DS sowing occurs between November and February with two clear peaks
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in December and January. WS transplanting is between June and September with peaks in June and late

July (see also Figure 6). The areas with three rice crops per year (see Figure 4) usually have an early

DS (October-November) followed by a late DS/early WS establishment in April and finally a late WS

establishment in August. The combined length of the vegetative and reproductive phases peaks at 60 to

70 days which is typical of commonly grown 110 to 120 day varieties that are transplanted as 20 day old

seedlings. The growth cycle of a typically grown variety such as NSIC Rc 222 (an inbred variety with a

duration of 114 days) can be broken down into transplanting of a 20 day old seedling, then 64 days to reach

flowering and a further 30 days to reach maturity) (Laborte et al., 2015).

These results are encouraging and suggest the PhenoRice can provide accurate and representative esti-

mates of crop establishment and flowering dates. These are useful and descriptive measures that can be used

to directly characterize the observed rice cropping system (see also Figure S4). These date estimates are

also vital inputs for crop growth simulation models, pest and disease models and other analyses that require

spatio-temporal information on key crop development stages in order to estimate biomass availability, water

use, yield and exposure to yield reducing stresses. Application of the algorithm to multiple years of MODIS

data could reveal medium term (10-15 years) changes in establishment dates, inter-annual changes in crop-

ping intensity, and changes in vegetative and reproductive phase length indicative of a shift to varieties with

different durations and the impacts of atypical weather or water availability. In combination with weather

and climate information, the same results could be used to suggest optimal establishment dates or season

lengths to reduce the risk of exposure to abiotic stresses at key growth stages.

4.3. PhenoRice advantages, limitations and suitability for within-season phenological monitoring

4.3.1. Factors influencing rice identification

The analysis of Phenorice detection performance confirmed that cloud contamination, target fragmenta-

tion, the contrast between a flooded area and the surrounding environment and crop establishment practices

can all influence rice identification capability. Although we do not consider these different factors indepen-

dently, the diversity of situations in the case study sites allows us to draw some conclusions about algorithm

robustness and applicability in other contexts.

As expected, cloud contamination in PHL–WS was pervasive between July and August, when up to 80%

of pixels were cloudy for some acquisitions (Figure S3). Despite this, the results are still satisfactory and are

comparable to other published methods for rice mapping (Gumma et al., 2011) or cropland maps produced

from MODIS data (Leroux et al., 2014), and the crop establishment date is estimated with good accuracy

(MAE = 11.7 days). Target fragmentation relates to the intrinsic limitation of moderate resolution data
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in land cover mapping. The regional validation revealed that the algorithm is able to capture the spatial

pattern of crop presence and compared well against HR data sets, though the total area is underestimated,

especially for IND. The Pareto boundary analysis (Figure S2), which has also been exploited in a similar

manner by Leroux et al. (2014) and Waldner et al. (2015), confirmed that the IND case study site is more

challenging and thus a high omission error should be expected. The PHL–DS and ITA sites have the best

conditions: cloud contamination is very low; the rice area is homogeneous with respect to MODIS pixel size,

and; in PHL–DS, the flooded fields show a strong contrast with the surrounding environment.

4.3.2. Usability in other regions

A limitation in the current implementation of PhenoRice is its reliance on the identification of flooded or

saturated field conditions prior to crop establishment. These conditions are typical of irrigated and rainfed

lowland rice systems, where the field is flooded before the crop is established and the soil continues to be

flooded or saturated for much of the season. There are 93 million hectares of irrigated rice and 52 million

hectares of rainfed lowland rice, and these account for more than 90% of global rice production. Other

practices where we can expect little or no flooding signal, such as rainfed upland rice and “aerobic” rice,

cover 15 million ha (less than 10% of the global rice area – GRiSP (Global Rice Science Partnership) (2013),

but their importance varies by region: in Central and West Africa, upland rice comprises about 35% of the

total rice area (GRiSP (Global Rice Science Partnership), 2013); in the Cerrado region of Brazil, farmers

grow aerobic rice on about 250,000 ha of flat lands (International Rice Research Institute (IRRI), 2016); in

China, aerobic rice was estimated to cover 1 million ha in 2015 (Templeton and Bayot, 2011). Transplanting

and wet seeding establishment are by far the most dominant methods of crop establishment, although dry

seeding is prevalent in the USA, and in rainfed systems in parts of China and north west India. Dry seeding

is also practiced traditionally in most Asian countries in rainfed upland ecosystems. This practice is also

becoming more and more popular also in southern Europe, and in particular in the north of Italy (Ranghetti

et al., 2016).

In general, we assume that PhenoRice is well suited to situations where rice is transplanted or wet

seeded under irrigated or rainfed conditions, which accounts for the vast majority of rice growing areas.

Performance can be degraded in rice growing areas where dry seeding is practiced, aerobic rice is grown, or

where fields are sloping. These areas constitute a small percentage of the global rice area.

4.3.3. Robustness of processing parameters and the need for local calibration

The choice of processing parameters (Table 2) influences the ability of PhenoRice to accurately detect the

rice seasons occurring within the spatial and temporal analysis window. Our results showed however that
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the criteria used to identify the “rice signal” were stable across the three sites, with only a slight modification

in EV Imin th required to help improve rice detection in rainfed or double/triple cropping areas. EV Imin th

was set to a lower value in ITA since rice is sown in spring into wet fields that were left bare during winter.

Some local knowledge of the rice growing environment can help therefore to guide threshold choice and

the stability of these thresholds and their relation to management practices and environmental conditions

should be further explored, but current results are promising for testing and implementation in other areas.

The choice of the most appropriate temporal windows used in the analysis can be also guided by local

knowledge of the rice growing seasons in the different areas, or by referring to published rice crop calendars.

However, we note that many published calendars do not include the minor growing seasons for a second or

third rice crop, and efforts should be made to improve the spatial and temporal detail of published crop

calendars. In this context PhenoRice can prove useful for better characterization of the spatial variability

rice growing seasons in different areas of the world, providing, for example a better understanding of the

potential impact of adverse meteorological conditions on rice production.

4.3.4. PhenoRice usefulness and foreseen improvements

PhenoRice is not designed as a crop mapping tool to retrieve cultivated area statistics, but as a tool

to identify a representative and robust sample of rice cultivated pixels from which to extract accurate

information on crop dynamics. This information can be an input to analyses of changes in cropping practices

in time, or as inputs to crop modelling. Accurate rice area estimates require higher resolution remote sensing

data such as ESA Sentinel 1, 2 or both combined. Both platforms provide imagery with pixel sizes that

are smaller than or comparable to typical rice field sizes and have revisiting times that provide sufficient

acquisitions for seasonal crop detection. Sentinel 1 in particular is very promising for rice area estimation

(Bouvet and Toan (2011); Nelson et al. (2014); RIICE – http://www.riice.org/; GEORice – http:

//due.esrin.esa.int/page_project155.php). Future versions of PhenoRice could incorporate Sentinel 1

information for flood detection as well as Sentinel 2 information to allow more accurate identification of the

rice area from which to sample with higher temporal frequency using moderate resolution.

The main innovative contribution of PhenoRice is to provide multiannual information on crop intensity

and phenology to conduct wide area, long term analysis using moderate resolution satellite data archives.

Preliminary studies conducted with this objective in the Senegal River Valley area showed very promising

results, and identified a strong increase in rice cultivation in the dry season thanks to the improvement

in irrigation practices (Busetto et al., 2016). However, the algorithm can also be applied in near real

time monitoring applications to detect crop establishment and flowering following the logic of Combal and
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Bartholomé (2008). Initial tests of this capability within the framework of the ERMES project have been

promising and have been used to provide spatial explicit sowing date information as inputs to crop models

for seasonal yield forecasting (Boschetti et al. (2015a); http://www.ermes-fp7space.eu).

5. Conclusions

Spatio-temporal information on staple crops is an essential component of regional crop monitoring ap-

plications. The most valuable contribution of moderate spatial but high temporal resolution optical remote

sensing is in the temporal crop phenology/management domain as opposed to the area estimation domain,

especially in fragmented landscapes where field sizes are substantially smaller than the pixel size. Despite

this there are many more examples of area estimation than temporal information estimation in the literature.

Staple crops like rice are grown on a large extent in many countries in a range of environments which

makes automated, rule-based methods for mapping and monitoring a very attractive solution. However

rule-based methods for rice should be demonstrated as reliable and robust when considering the wide range

of rice based cropping systems caused by the combination of the following factors:

� The diversity in genetics, environment and management (typically called GxExM interactions);

� The diversity of consumer and producer preferences for rice varieties;

� Complex and hard to measure socio-economic constraints;

� Localised, seasonal abiotic and biotic stresses.

We developed an algorithm, PhenoRice, to map three important temporal characteristics of rice cropping

systems – rice cropping intensity, crop establishment date and flowering date – based on the relationship

between spectral indices and rice crop management and development stages. The comparison of results

from PhenoRice against high resolution, spatially explicit validation data in three diverse but representative

rice cropping systems in Europe and Asia showed that the algorithm provided reliable and robust estimates

of the spatio-temporal patterns of cropping intensity and crop establishment date. The identified diversity

of combined vegetative and reproductive phases length per site also matched well with local information

on crop establishment period and maturity of dominant varieties grown in the different cropping systems.

Variations in the capability of the algorithm between and within sites was described and related to different

crop establishment methods, water management, rice landscape fragmentation and quality of the MODIS

imagery.
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In conclusion, the results suggest that PhenoRice is a robust approach for deriving essential temporal

descriptions of rice systems in both temperate and tropical regions. It can provide information at a level

of spatial and temporal detail that is suitable for regional crop monitoring on a seasonal basis as well

as providing information for crop yield models, crop health models and for rice system characterisation.

PhenoRice is a contribution to operational remote sensing based methods for crop monitoring on a regional

scale.
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