DeGaS – MC

A Dense Gas Survey of the Magellanic Clouds

http://irfu.cea.fr/Pisp/maud.galametz/DeGaS-MC/DeGaS.html

Maud Galametz, CEA Saclay maud.galametz@cea.fr

Content

Introduction on gas content and elemental abundances in the LMC

Previous studies on the dense gas in the LMC

The DeGaS-MC single-pointing campaign

Previous attempts to resolve the dense gas

The future DeGaS-MC Band 5 mapping campaign

The Large and Small Magellanic Clouds

LMC

Distance: 50 kpc Metallicity: 1/2 solar Mass: 10⁹ M_•

SMC

Distance: 61kpc Metallicity: 1/5 solar Mass: LMC / 5

Molecular gas in the LMC traced via CO

For the SMC: APEX / COSSA (Van Kempen et al in prep)

The MG clouds among the dwarf population ...

Adapted from Y. Nishimura

Major differences in the elemental abundances of C, N, O

Galaxy	z / z _o	0/Н	С/Н	N / H	S / H
Milky Way	1	7.41 x 10 ⁻⁴	4.47 x 10 ⁻⁴	9.12 x 10 ⁻⁴	1.70 x 10 ⁻⁴
LMC	1/3-1/2	2.4 x 10 ⁻⁴	0.79 x 10 ⁻⁴	0.87 x 10 ⁻⁴	1.02 x 10 ⁻⁴
	Thus:	1/3	1/5	1/10	1/2

Dufour et al. 1982

Why studying dense gas in the Magellanic Clouds

How do molecular clouds fragment ?

How is the star formation efficiency affected by the ISM conditions ?

Dense gas: where star formation is taking place

LMC and SMC : ideal laboratories

- Proximity
- low metal content
- Range of SF activity

MAGMA :

MOPRA (22m) survey of LMC @11pc resolution Wong et al 2011

^{12,13}CO(1-0) already released

HCO⁺(1-0), HCN(1-0), HNC(1-0) toward 48 GMCs

Levy et al in prep

Nishimura et al 2016

Survey towards 7 clouds with MOPRA

Very few differences with the star formation activity of the cloud

Very few differences with the star formation activity of the cloud

Dense Gas Survey in the Magellanic Cloud

APEX Band 5 survey of the HCO⁺ and HCN 2-1 lines

Motivations

- Selection bias in the LMC barely any analysis in the SMC
- Second transition of HCO⁺ and HCN to derive cloud properties: Density Excitation temperature
- Probe the variations of the SFE with the dense gas fraction

Characteristics of the sample

- from massive OB complexes to lower-mass star-forming clouds The $M_{CO,vir}$ range from 2 x 10⁴ to 10⁶ M_{\odot}

DeGaS-MC: the single pointing campaign

SMC 1 region observed in SV phase 8 regions observed in P97 LMC 21 regions observed in ESO P97

DeGaS-MC: LMC HCO⁺ detections

The lines detected toward the SMC clouds have larger linewidths: more turbulence? outflows ?						
		Observed	Detected	Average Width	Т _{реак} (mK)	
LMC	HCO+ (2-1) HCN (2-1)	21 21	16 5	4.1 5.1	20 to 270 20 to 80	
SMC	HCO+ (2-1) HCN (2-1)	9 9	6 2	4.7 7.2	45 to 100 15	

When both are detected: HCO⁺ / HCN > 2. Inverse ratio in the MW

\rightarrow Different N/O abundances

Variations of the ratio throughout the LMC

		Observed	Detected	Average Width	T _{peak} (mK)
LMC	HCO+ (2-1)	21	16	4.1	20 to 270
	HCN (2-1)	21	5	5.1	20 to 80
SMC	HCO+ (2-1)	9	6	4.7	45 to 100
	HCN (2-1)	9	2	7.2	15

DeGaS-MC: Line characteristics

Trend of the linewidth with the flux density

Weak correlation between the CO-based gas masses and the strength of the HCO⁺ lines

Points are color-coded by increasing M_{CO,vir}

Velocity gradient across the LMC

Velocity gradient across the LMC

van der Marel et al. 2013

velocity field derived from observed stellar velocities

Dense Gas Survey in the Magellanic Cloud

We need to resolve the clouds to:

- analyse the cloud morphology and dynamical state
- trace the variation of the density profile
- perform radiative transfer analysis at a per-cloud level

Previous obs. with ATCA

Seale et al 2012 Survey of 4 LMC clouds with ATCA

Previous obs. with ATCA

Anderson et al 2014

30Dor with ATCA

First conclusions

- Low dense gas fraction: 10%
- Clumpy structure of the GMCs
- Clump masses : $10^2~M_{\odot}$ to $3{\times}10^4~M_{\odot}$ radii $\,$: 1 2 pc

- HCN / HCO+

when mass, column density, and SF activity

- Ability of a clump to form massive stars : determined by clump properties
- Very few massive (>10³ M_{\odot}) clumps without SF

 \rightarrow timescale shorter than the clump lifetime.

- Few variations observed with the strength of the UV radiation field

DeGaS-MC: future mapping campaign

N159W mapped in ESO P98 (DDT)

45 hours of OSO time will be observed in P99

8pc scales: resolve the molecular gas complexes, parents of the filaments where stars form

DeGaS-MC: HCO⁺ (2-1) observed with SEPIA in N159W

HCO+ detections overlaid on the Herschel SPIRE map

- What drives the local variations in the HCN/HCO⁺ ratio ?
- How does the SFE vary with the environment?

or with those derived in other galaxies

- Radiative transfer modelling / gas thermal balance
 - Maps of the kinetic temperature
 - Maps of column densities
 - Constraints for PDR codes or shock models

Formation / evolution of YSOs

Carlson et al 2012

- What is the critical mass for a YSO to form ?
- What are the physical properties (mass, temperature) of their parenting clouds ?

- Where are they found in these clouds: center / edges ?
- How are they affecting / dispersing their host clump ?
- What are the timescales of these different processes ?

A lot to learn from ALMA (<1pc)

Fukui et al. 2015, filament collision in N159W

Radius (pc)

32 -

Indebetouw et al. 2013, 30Dor observed with ALMA

... a lot of on-going work

Stay tuned on our results and releases : http://irfu.cea.fr/Pisp/maud.galametz/DeGaS-MC/DeGaS.html

CEA, Paris-Saclay

M. Galametz (PI) F. Galliano V. Lebouteiller F. Polles M.-Y. Lee S. Madden

ESO, Garching

C. De Breuck K. Immer Z.-Y. Zhang

ESO, Chile J.-P. Perez-Beaupuits

Univ. of Heidelberg

M. Chevance D. Cormier S. Hony

SRON, The Netherlands T. Van Kempen

Chalmers R. Aladro NAO JapanMPE GarchingE. MullerA. Schruba

LERMA, Paris A. Gusdorf