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Abstract—We give some sharp statements on absolute conver-
gence of the series of Fourier-Haar coefficients in terms of Lp-
and p-variation best approximations by Haar polynomials.

INTRODUCTION.

The Haar orthonormal system {χn}∞n=1 had been con-
structed in 1909 (see [1]). By this system A. Haar gave positive
answer on the question of D. Hilbert: is there an orthogonal
system such that Fourier series with respect to this system of
any continuous function converges uniformly to that function?

Let us recall the definition of Haar system. We set χ1(x) =
1 on [0, 1]. After that we introduce the open dyadic intervals
Iki =

(
2−k(i− 1), 2−ki

)
, i = 1, ..., 2k, k = 0, 1, ..., and

represent the natural number n ≥ 2 in the form n = 2k + i,
i = 1, ..., 2k, k = 0, 1, ... Then we set χn(x) = 2k/2 for
x ∈ Ik+1

2i−1, χn(x) = −2k/2 for x ∈ Ik+1
2i and χn(x) = 0 for

x ∈ [0, 1]\Iki , where Iki is closure of the interval Iki . If the
Haar function χn(x) has a jump in some poimt x ∈ (0, 1), then
χn(x) = [χn(x− 0) + χn(x+ 0)] /2. In the end points of in-
terval [0, 1] we set χn(0) = χn(0+0) and χn(1) = χn(1−0).
The Haar functions χn(x) are step functions.

The principal information on Fourier-Haar series may be
found in the book [2].

For a function f ∈ Lp[0, 1], 1 ≤ p < ∞, we introduce the
integral modulus of continuity

ω (δ, f)p = sup
0≤h≤δ

(∫ 1−h

0

|f(t+ h)− f(t)|p dt

)1/p

, (1)

0 ≤ δ ≤ 1, and the Fourier-Haar coefficients

f̂(n) =

∫ 1

0

f(x)χn(x)dx, n ∈ N.

Z. Ciesielski and J. Musielak [3] proved the following
Theorem A. Let β > 0, γ ≥ 0, p = max(β, 1),

f ∈ Lp[0, 1), and
∞∑
n=1

nγ−β/2ωβ (1/n, f)p < ∞. Then the

series
∞∑
n=1

nγ
∣∣∣f̂(n)

∣∣∣β converges.

Let us observe that in the paper [3] the authors introduced
a slightly different definition of the integral modulus of con-
tinuity in the space Lp[0, 1], 1 ≤ p < ∞. They extended the
function f to the real axis by setting f(x) = 0 for x /∈ [0, 1],

and evaluated the integral in the right-hand side of (1) over
the interval [0, 1]. But if we analyze the proof of Theorem 2
from [3], we see that the statement of Theorem A is valid.

Let us define the Wiener’s class Vp[0, 1], 1 ≤ p < ∞, of
functions of bounded pth-power variation on the interval [0, 1]
(see [4]). We set f ∈ Vp[0, 1], if

V (f)p = sup
τ

{
n∑
i=1

|f(xi)− f(xi−1)|p
}1/p

<∞,

where τ = {0 = x0 < x1 < ... < xn = 1} is arbitrary par-
tition of the interval [0, 1]. Let us note that the inclusion
Lip(1/p) ⊂ Vp[0, 1] holds for 1 ≤ p <∞.

P. L. Ulyanov [5] proved the following theorem.
Theorem B. For the function f ∈ V1[0, 1] the series

∞∑
n=1

∣∣∣f̂(n)
∣∣∣β or

∞∑
n=1

nγ−1/2
∣∣∣f̂(n)

∣∣∣ (2)

converge, if β > 2/3 or γ < 1 respectively. But this statement
does not true for β = 2/3 or γ = 1 respectively.

The first author (see [6]) generalized Theorem B to func-
tions f ∈ Vp[0, 1], 1 ≤ p <∞.

Theorem C. For the function f ∈ Vp[0, 1], 1 ≤ p < ∞,
the series (2) converge, if β > 2p/(p + 2) or γ < 1/p. But
this statement is not true for β = 2p/(p + 2) or γ = 1/p
respectively.

In the paper [7] a two-dimensional analog of this theorem
was proved.

In our paper we give some sharp generalizations of The-
orems A and C. We use the weight sequences belonging to
the classes A(α), α ≥ 1. These classes were introduced by L.
Gogoladze and R. Meskhia [8].

MAIN RESULTS.

We shall say that the positive sequence γ = {γk}∞k=1

belongs to the class A(α), α ≥ 1, if there is a constant C > 0
such that  2n+1∑

k=2n+1

γαk

1/α

≤ C2n(1−α)/αΓn,
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where

Γn =

2n∑
k=2n−1+1

γk, n ∈ N.

For n = 0 we assume that the above inequality holds for
Γ0 = γ1.

This definition is a partial case of one introduced by L.
Gogoladze and R. Meskhia [8]. It is easy to prove that
A(α1) ⊂ A(α2) for α1 > α2 ≥ 1.

Let us recall that for a function f ∈ Lp[0, 1), 1 ≤
p < ∞, the norm is defined by the equality ‖f‖p =(∫ 1

0
|f(x)|p dx

)1/p
. Below we shall use the best approxima-

tion En (f)p = inf
{ak}
‖f − tn‖p of the function f ∈ Lp[0, 1)

by Haar polynomials tn(x) =
n∑
k=1

akχk(x) of order n.

Theorem 1. Let f ∈ Lp[0, 1), 1 ≤ p <∞, and
∞∑
k=1

γk

[
k−1/2Ek (f)p

]β
<∞, (3)

where 0 < β < p, γ ∈ A (p/(p− β)). Then the series
∞∑
n=1

nγ
∣∣∣f̂(n)

∣∣∣β (4)

converges.
From the Theorem 1 and the inequality En(f)p ≤

21+1/pω(n−1, f)p, 1 ≤ p <∞, n ∈ N, (see [5]) it follows
Theorem 2. The assertion of the Theorem 1 is

also valid, if instead of the condition (3) we assume
∞∑
k=1

γk

[
k−1/2ω

(
k−1, f

)
p

]β
<∞.

For the function f ∈ Vp[0, 1], 1 ≤ p <∞, we set

ω1−1/p (δ, f) = sup
λ(τ)≤δ

{
n∑
i=1

|f(xi)− f(xi−1)|p
}1/p

, where

τ = {0 = x0 < x1 < ... < xn = 1} is a partition of
interval [0, 1] and λ(τ) = max

1≤i≤n
(xi − xi−1). This notation

was introduced in [9]. It is known the inequality ω (δ, f)p ≤
δ1/pω1−1/p (δ, f) for the function f ∈ Vp[0, 1], 1 < p < ∞
(see [6], Lemma 2 and [9], Theorem 2.5). Therefore from the
Theorem 1 it follows

Corollary 1. If f ∈ Vp[0, 1], 1 < p <∞, and
∞∑
k=1

γk

[
k−1/2−1/pω1−1/p (1/k, f)

]β
<∞, (5)

where 0 < β < p, γ ∈ A(p/(p − β)), then the series (4)
converges.

For the function f ∈ Vp[0, 1], 1 ≤ p < ∞, we define
the norm ‖f‖Vp

= max (Vp(f), ‖f‖∞), where ‖f‖∞ =
sup {|f(x)| : x ∈ [0, 1]}. Let us define the best approximation
En (f)Vp

= inf
{ak}
‖f − tn‖Vp

of the function f ∈ Vp[0, 1], 1 ≤

p <∞, by Haar polynomials tn =
n∑
k=1

akχk(x) of order n. It

is easy to prove the inequality En (f)p ≤ Cpn
−1/pEn (f)Vp

.
Therefore from the Theorem 1 it follows

Corollary 2. The assertion of the Corollary 1 is valid, if
instead of the condition (5) we assume

∞∑
k=1

γk

[
k−1/2−1/pEk (f)Vp

]β
<∞.

The following two theorems show that under some condi-
tions the statement of Theorem 1 is sharp.

Theorem 3. Let 1 ≤ p <∞, 0 < β < p, γ ∈ A(p/(p−β)),
and let be given some decreasing and tending to zero sequence
ε = {εi}∞i=1 satisfying Bary condition

∞∑
i=k

εi/i = O (εk) , k ∈ N, (6)

and
∞∑
k=1

γk
(
k−1/2εk

)β
= ∞. Then there exists a function

f ∈ Lp[0, 1] such that En (f)p ≤ εn, n ∈ N, and the series
(4) diverges.

Theorem 4. Let 0 < β ≤ 1 for 1 < p < ∞ and
0 < β < 1 for p = 1. Moreover, let be given the sequence
γ ∈ A(p/(p− β)) such that (1−α)2β/2Γn+1 ≥ Γn for some
α ∈ (0, 1) and a decreasing and tending to zero sequence

ε = {εi}∞i=1 such that
∞∑
k=1

γk
(
k−1/2εk

)β
= ∞. Then there

exists a function f ∈ Lp[0, 1) such that En (f)p ≤ εn,
n ∈ N, and the series (4) diverges.

The following theorem shows that under some conditions
the statement of the Corollary 2 is sharp.

Theorem 5. Let 1 < p <∞, 0 < β < p, γ ∈ A(p/(p−β)),
and let be given some decreasing and tending to zero sequence
ε = {εi}∞i=1 satisfying Bary condition (6) and such that
∞∑
k=1

γk
(
k−1/2−1/pεk

)β
= ∞. Then there exists a function

f ∈ Vp[0, 1] such that En (f)Vp
≤ εn, n ∈ N, and the series

(4) diverges.

Remark. Theorem 2 and Corollaries 1 and 2 have two-
dimensional analogs which will appear elsewhere.
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