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ABSTRACT

We analyze the transmission of a noisy signal by systems
which are linear for small inputs and saturate at large
inputs. Large information-carrying signals are thus dis-
torted in their transmission. We demonstrate condi-
tions where noise addition to such large input signals
can reduce the distortion they undergo in the transmis-
sion. This is established for both periodic and aperiodic
information-carrying signals. This effect is made possi-
ble because the noise acts as a random bias, shifting the
operating zone of the nonlinearity, on average, into a
region more favorable to the signal transmission. These
results constitute a new instance of the nonlinear phe-
nomenon of stochastic resonance where addition of noise
may reveal beneficial to the signal.

1 INTRODUCTION

A nonlinear effect, recently introduced under the name
of stochastic resonance, displays very attractive poten-
tialities for signal processing. Stochastic resonance es-
tablishes that, for certain types of nonlinear coupling
between signal and noise, the presence or even the ad-
dition of noise, may result in improved performance for
the signal (see [1, 2] for recent reviews). Following its in-
troduction some twenty years ago, stochastic resonance
has gradually been observed in an increasing variety of
nonlinear processes, including electronic circuits [3, 4, 5],
optical devices [6, 7], neural systems [8, 9]. It has also
progressively been established that stochastic resonance
can occur under many different forms, according to the
nature of the signal, of the noise, of the nonlinear cou-
pling which are involved and also of the measure of per-
formance receiving improvement from the noise. Vari-
ous forms of noise-enhanced transmission have been re-
ported for periodic or aperiodic deterministic signals or
for random information-carrying signals, in the presence
of Gaussian or non-Gaussian, white or colored, noise.
Performance has been measured by signal-to-noise ratio,
input—output gains, cross-correlation, mutual informa-
tion, channel capacity, detection probability, estimation
efficacy, propagation distance, all these quantities hav-
ing been shown improvable via noise addition, in specific

conditions. So far, systems that have been shown capa-
ble of producing a stochastic resonance effect essentially
are nonlinear systems with potential barriers or with
thresholds. In this case, the essence of the effect is that
the information-carrying signal by itself is too small to
overcome a threshold or a barrier in the response of the
system. Addition of noise then allows some type of co-
operation between signal and noise, so as to overcome
the threshold or barrier, and elicit a response bearing
stronger relation to the signal thanks to assistance from
the noise.

In the present paper, we extend the class of nonlin-
ear systems that have been shown capable of stochastic
resonance. We consider systems which are purely lin-
ear in the small-signal limit (no threshold nor barrier).
At the same time, the systems we consider exhibit sat-
uration in their response for large input signals. Large
information-carrying input signals are thus distorted in
their transmission. We demonstrate conditions where
noise addition to such large input signals can reduce the
distortion they undergo in the transmission, establishing
a new form of noise-improved signal transmission.

2 A NONLINEAR TRANSMISSION

To have a simple demonstration of the new form of
stochastic resonance we envision, we consider a deter-
ministic signal s(¢) added to a white noise 5(t) endowed
with a probability density function f,(u). The input
signal-plus-noise mixture s(¢) 4+ n(t¢) is transmitted by a
memoryless or static nonlinearity g(.), so as to produce
the output signal

y(t) = g[s(t) +n(1)] - (1)

A standard analysis of a stochastic resonance effect
would introduce some measure of similarity between in-
put s(¢) and output y(¢) and investigate the possibility
of increasing this measure of similarity through an in-
crease of the noise 5(t).

When s(t) is periodic with period T, output signal
y(t) of Eq. (1) generally is a cyclostationary random
signal, with a power spectrum containing spectral lines
at integer multiples of 1/T emerging out of a continuous



noise background [10]. A standard measure of similarity
of y(t) with the T-periodic input s(t) is a signal-to-
noise ratio defined as the power contained in the output
spectral line at 1/Ts divided by the power contained
in the noise background in a small frequency band AB
around 1/Ts.

For the input-output relationship of Eq. (1), the
power contained in the output spectral line at frequency
n/T, is given [10] by |Y,|?, where YV, is the order n
Fourier coefficient of the T;-periodic nonstationary out-
put expectation E[y(¢)], i.e.
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with the time average defined as

()= TL/O St (3)

The output expectation E[y(t)] at a fixed time ¢ is com-
putable as
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The magnitude of the continuous noise background in
the output spectrum is measured [10] by the stationar-
ized output variance (var[y(t)]), with the nonstationary
variance var[y(t)] = E[y%(t)] — E[y(t)]? at a fixed time ¢,
and
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A signal-to-noise ratio Ry, for the harmonic n/T; in
the ouput y(t), follows as
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where At is the time resolution of the measurement (i.e.
the signal sampling period in a discrete-time implemen-
tation).

When the deterministic input s(¢) we seek to extract
out of the output y(t) is no longer periodic, then the
signal-to-noise ratio R, of Eq. (6) is no longer avail-
able as a meaningful input—output measure of similar-
ity. Consider s(t) a deterministic aperiodic signal ex-
isting over the duration 7. In such a case, meaning-
ful input—output measures of similarity are provided by
cross-correlations as used for instance in [11, 12]. We
choose here to use the normalized time-averaged cross-
covariance between input s(¢) and output y(¢); it pro-
vides a similarity measure insensitive to both scaling
and translation in signal amplitude. We introduce the
signals centered around their time-averaged statistical
expectation,

5(t) = s(t) — (s(t)) (7)

and
y(t) = y(t) — (E[y@®)]) , (8)

with the time average again defined by Eq. (3). The
normalized time-averaged cross-covariance is
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or equivalently, since s(t) is deterministic,
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(10)
We now hold two measures of similarity between in-
put s(¢) and output y(¢), one is R, of Eq. (6) for s(?)
periodic, the other is C;, of Eq. (10) for s(¢) aperiodic.
We shall now exhibit conditions for s(¢) and the trans-
mission system g¢(.) where these input—output similari-
ties can be improved when the level of the noise () is
raised.
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3 NOISE-ASSISTED TRANSMISSION

As mentioned above, we investigate here transmission
systems ¢(.) which are linear for small inputs and satu-
rate for large inputs. As a typical example, we consider
the nonlinearity

9(u) = tanh(Bu) (11)

with adjustable slope # > 0, which is linear as Su for
small |u| < 1/ and saturates at +1 for large |u| > 1/8.

Further, it is convenient for illustration to consider
the case where 7(t) is a zero-mean uniform noise over
[—V30,,V30,] with standard deviation o). In this case,
with the nonlinearity g(.) of Eq. (11), the integrals of
Egs. (4) and (5) can be evaluated analytically instead
of numerically, so as to yield

cosh (ﬁ [s(t) + \/50',,] )
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and
B (0) = 5 2V, + tanh (3[s0) - Vi

— tanh (ﬂ[s(t) + \/30,7]) ] .
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Figure 1 shows the output signal-to-noise ratio R at
frequency 1/T; from Eq. (6), with AtAB = 1072 as
in [13], as a function of the rms amplitude o, of the
zero-mean uniform noise n(¢), for the transmission of
the periodic input s(¢) = 10 + 10sin(27t/Ts) by the
nonlinearity of Eq. (11). Three values of the slope § are
tested.
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Figure 1: Output signal-to-noise ratio R from Eq. (6)
as a function of the rms amplitude ¢, of the uniform
noise 7(t), for s(t) = 10+ 10sin(27t/Ts) and in Eq. (11)
with 8 =1 (top), = 2 (middle), # = 5 (bottom).

In the conditions of Fig. 1, the input s(¢) = 10 +
10sin(27t/T;) displays excursions to large amplitudes,
in relation to the parameter 1/8 of the nonlinearity of
Eq. (11). Therefore s(t) is strongly distorted in its trans-
mission. In Fig. 1, at ¢, — 0, the signal-to-noise ratio
R1 gets infinite because, although the periodic compo-
nent is very small in the output y(¢), the noise com-
ponent vanishes. Next, as the noise level o, increases
above zero, R rapidly drops. Yet, when o, becomes
sufficiently large, R starts to rise. This is properly the
stochastic resonance effect. The noise 5(t) added to the
large input s(¢) makes it possible to operate the system
in regions of the nonlinearity tanh[3(.)] that are more
favorable to the transmission of s(¢). Thus, on average,
the noise reduces the distortion experienced by the large
input s(t) in its transmission. This results in a signal-
to-noise ratio Ry in Fig. 1 which can increase as o, is
raised, to culminate for an optimal noise level where the
distortion in the transmission of the periodic component
is minimized. This effect of noise-assisted transmission
is preserved when f is varied, and, as visible in Fig. 1,
is more pronounced for large # when the distortion by
the saturating nonlinearity is stronger.

A similar type of stochastic resonance can be obtained
in the transmission of an aperiodic signal and measured
by an input—output correlation. Figure 2 shows the
cross-covariance from Eq. (10), as a function of the rms
amplitude o, of the zero-mean uniform noise n(t), for
the transmission by the nonlinearity of Eq. (11) of the
aperiodic input

s(t) = 5 sin <27r%/2> +4sin <2w3T+/2) (14)

when t € [0,T;], and s(t) = 0 elsewhere.
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Figure 2: Input—output normalized cross-covariance C'y
from Eq. (10) as a function of the rms amplitude o,
of the uniform noise n(¢), for s(t) of Eq. (14) and in
Eq. (11) with 2 = 2 (top), # = 5 (middle), 8 = 8
(bottom).

Again, Fig. 2 illustrates an effect of noise-assisted sig-
nal transmission, where the correlation between the ape-
riodic input s(¢) and the output y(¢) is maximized for a
sufficient nonzero noise level. Figure 3 shows the large
signal s(t) of Eq. (14) and the way it is transmitted in
the absence of noise and at the optimal noise level. Fig-
ure 3(c) displays an ensemble average of the output y(t)
showing that noise addition yields an output which is
more similar to the input s(¢), on average, compared to
the transmission with no noise.
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Figure 3: Transmission by Eq. (11) with 8 = 2. (a)
Input signal s(t) of Eq. (14). (b) Output y(t) =
tanh[Bs(t)] with no noise. (¢) Ensemble average of out-
put y(t) = tanh{B[s(¢) + n(¢)]} with n(t) a zero-mean
uniform noise at the optimum o, = 2.5.

An alternative way can be used to quantify the benefit



of noise addition. Figure 4 represents the ratio Cy, /Cly
where z(t) = s(t) + n(t) is the input signal-plus-noise
mixture, and Cs, the normalized cross-covariance be-
tween s(¢) and z(?) computed as in Egs. (9)-(10). The
ratio Cyy /Cs also can be increased by raising the noise,
and it culminates at a maximum. The optimal value of
the noise is different for Cy, of Fig. 2 and for C, /C;s of
Fig. 4, because they are two distinct quantitative mea-
sures of a qualitatively similar effect of noise-improved
transmission.
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Figure 4: Output/input ratio of the cross-covariance
Csy/Css (see text) as a function of the rms amplitude
o, of the uniform noise 5(t), for s(t) of Eq. (14) and
in Eq. (11) with 8 = 2 (top), 8 = 5 (middle), 5 = 8
(bottom).

4 CONCLUSION

We have shown that the transmission of a signal by a
saturating nonlinearity can be improved by addition of
noise. This property has been obtained here with the
nonlinearity of Eq. (11) and uniform noise. These condi-
tions are merely illustrative, and it can be verified that
the effect is preserved in many other conditions, espe-
cially with Gaussian noise. Such an effect can be useful
when a signal has to be transmitted by a nonlinear sys-
tem over which no full control is available, especially to
adjust the operating zone of the nonlinearity in accor-
dance with the signal. Here we demonstrated that with
large signals, not well positioned in relation to a saturat-
ing nonlinearity, addition of noise at the input provides
a means of shifting the operating zone of the nonlinear
response to a region more favorable to the transmission
of the signal. These results can be interpreted as a new
instance of the general phenomenon of stochastic reso-
nance, by which, in the presence of nonlinear coupling
between signal and noise, addition of noise may reveal
beneficial to the signal.
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