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ABSTRACT 

Human interaction often entails lies. Understanding when a partner is being deceitful is an important social skill, that also 

robot will need to properly navigate social exchanges. In this work, we investigate how good are human observers at detect-

ing false claims and which features they base their judgment on. Moreover, we compare their performance with that of an 

algorithm for lie detection developed for the robot iCub and based uniquely on pupillometry. We ran an online survey asking 

participants to classify as truthful or deceptive 20 videos of individuals describing, either correctly or untruly, complex draw-

ings to iCub. They also had to rate their confidence and provide a written motivation for each classification. Responders 

achieved an average accuracy of 53.9% with a higher score on detecting lies (55.4%) with respect to true statements (52.8%). 

Also, they performed better and more confidently on the videos iCub failed to classify than on the ones iCub correctly de-

tected. Interestingly, the human observers listed a wide range of behavioral features as means to decide whether a speaker 

was lying, while the robot’s judgment was driven by pupil size only. This suggests that an avenue for improving lie detection 

could be a joint effort between humans and robots, where human sensitivity to subtle behavioral cues could complement the 

quantitative assessment of physiological signals feasible to the robot. Finally, based on the reported motivations, we specu-

late and give hints on how the lie detection fields should evolve in the future, aiming to portability to real-world interactions. 

1 Introduction 

Lying is a consistent part of human’s social interactions [1], [2], learned since younger age [3], [4]. Feldman et al. found that on a population 
of students, 60% of the participants lied at least once in a 10-minutes conversation [5] while, in general, people lies at least two times each 
day [6]. Other than for deceptive and malicious activities, everyone exploits a large amount of “white lies” both to help others and to help 
ourselves. For instance, we lie to present ourselves better than we are [5], to avoid awkward conversations [1], or to persuade others [7]. 

Robots will be soon part of our everyday life. Like humans, they will need to be able to detect deception during common human-robot 
interactions, for instance, to assess partners’ trustworthiness [8], to present more efficient support to humans (i.e., in teaching or 
caregiving) and to maintain a solid social interaction with other individuals in the society. Multiple technical solutions have been developed 
to detect lies. Traditional methods of lie detection rely on monitoring physiological metrics related to cognitive load and stress, such as 



 

 

 

 

skin conductance, respiration rate, and heartbeat of blood pressure. The polygraph achieves an accuracy between 81% and 91%, making it 
one of the most used lie detectors [9]. However, literature proves it is possible to bypass its measure [10]. Other state-of-the-art methods 
rely on fMRI images [11], skin temperature variations [12], micro-expressions [13], photoplethysmography [14], or acoustic prosody [15]. 
However, most of those methods are either expensive, depend on invasive or cumbersome devices, or require the presence of experts, 
which limits their portability on robotic platforms and real-life human-robot interactions.  

In previous works, we enabled the humanoid robot iCub to detect lies in real-time during an informal and entertaining card game (the 
Magic Trick, [8], [16]): we asked participants to describe to iCub a set of cards characterized by complex drawings, lying about a few of 
them while wearing a Tobii Pro Glasses 2 eyetracker; iCub used the pupillometry features collected in real-time from the eyetracker to 
classify players’ lies with an accuracy of 88.2%. To do so, we exploited a well-known effect: lying requires a cognitive effort due to the 
fabrication and maintenance of a consistent deception [6], [10], and this reflects on measurable Task Evoked Pupillary Responses, like 
mean pupil dilation and latency to peak [17], which can be used to detect lies [18].  

Humans however cannot have access to precise information about the pupillometry of the partner, but still can sometimes detect lies. On 
average human performance in lie, detection is 54% [19], with an accuracy of 47% on detecting false statements and of 61% on detecting 
true ones. With training, experts, such as law enforcement or secret service officers could reach and accuracy of 65%; however, they report 
their detection is based more on a gut feeling and past experiences. Indeed, one of the main reasons detecting lies is a hard problem is the 
absence of a finite and objective set of behavioral cues that can be directly related to deception [20]. As reported by De Paulo et al. [6] and 
Vrij et al. [21] what usually happens is a combination of multimodal and context-based cues related to the control of body reactions or to 
hiding an internal feeling. Some of those cues are the increase of body movements, impossibility to stay still, speech hesitation, complexity 
of the speech, mutual gaze avoidance, hand movements, the covering of face and mouth, and increased number of stopwords. However, 
recent research started questioning the reliability of behavioral cues to detect deception [21], [22]. For a robot, it could be relevant to 
understand which features enable human observers to tell a partner is lying. Such intuition, paired with the technical solutions potentially 
portable on robots, could help them to better understand human partners’ behaviors. 

In this paper, we propose an online study meant to evaluate how humans perform at detecting lies in the same game scenario on which 
we developed our above-mentioned solution [16]. We asked participants to take the role of iCub in the Magic Trick card game, classifying 
20 videos as truthful or deceptive. A similar lie catcher study has been done recently in [15], [23] even if the focus there was on acoustic 
and prosodic features We compare participants' performances with those of the purely pupillometry-based method we endowed iCub with 
and we analyze which other features participants based their judgments on. Results provide useful hints on how improving our system 
and how the lie detection field in human-robot interaction should evolve in the future. 

  

Figure 1: (Left) Participant describing a card to iCub, while wearing the Tobii Pro Glasses 2 eyetracker (Logitech Brio 4k 

webcam point of view); (Right) Point of view of the participant during the interaction collected through the Tobii glasses 

with an example of the described cards. 



   

 

 

2 Methods 

For the online survey, we used the videos collected during the Magic Trick card game presented in [8], [16]. 

2.1 The Magic Trick Card Game 

The Magic Trick is a game-like human-robot interaction where players describe 6 gaming cards from the Dixit card game [24] to the 
humanoid robot iCub (see Fig. 1). Players were asked to describe some of the cards creatively and deceitfully, while describing the others 
truthfully. No limitation was provided on the number of cards described falsely neither on the length of the descriptions. After each card, 
iCub tried to classify its description as true or false. iCub’s classifications were based on the real-time reading of players’ pupil dilation via 
the Tobii Pro Glasses 2 eyetracker they wore (see Fig 1, left). During a previous interaction [16], iCub learned on a similar task how players’ 
pupils dilate in response to a lie. Then, it exploited this information to classify each card description: pupils are known to dilate in response 
to an increase of cognitive load, like the one generated by the fabrication of a false description; in the first interaction iCub learns the mean 
pupil dilation of players for truthful and deceptive descriptions, then those values are compared with the mean pupil dilation of new card 
descriptions; the closer score is the assigned class. N=34 participants played the Magic Trick Card Game and iCub could correctly classify 
players’ descriptions with accuracy = 70.8%, precision = 73.6%, recall = 57%, and F1 score = 64.2% (N=34). For a deeper analysis of both 
interactions see [16] and [8]. 

2.2 Materials 

A Logitech Brio 4k webcam, fixed on a television behind iCub, recorded the interaction from iCub's point of view at a resolution of 1080p 
(Fig. 1, left). We segmented in 6 card descriptions the videos of the 34 participants who took part in the experiment, resulting in 204 videos. 
From these videos we discarded: (i) the players who did not give the consent to share the videos recorded during the experiment (N=3); 
(ii) the players who wore a surgical mask or other accessories which prevent a complete vision of players’ face (N=4); (iii) the videos 
affected by recording technical issues (N=7). Then, we picked a balanced set of 20 videos following a 2 x 2 set of conditions: (i) Card Label: 
10 videos present a truthful description (True videos) and 10 a deceitful description (False videos); (ii) Difficulty: among each sub-group, 5 
videos have been successfully classified by iCub during the game (robot-easy videos) while for the other 5 iCub’s classification failed (robot-
difficult videos). Moreover, we ensured each video involved a different actor and a different card, even if described falsely. The resulting 
set of videos lasted on average 27 seconds (SD=15 seconds). We uploaded the 20 selected videos on Vimeo [25], and linked them on 
SurveyMonkey [26], the platform used to administrate the online survey. 

2.3 Procedure  

We designed the online survey as a game in which responders compete on detecting the highest number of deceptive card descriptions. 
Before starting the survey, responders were asked to accept an informed consent, they had to select a nickname for anonymization purposes 
and were asked to wear headphones and carefully listen. The survey consisted of three phases: 

2.2.1 Pre-questionnaire 

Responders answered questions about their sex and age and filled in the Italian version of the Ten-Items Personality Inventory (TIPI) 
(extroversion, agreeableness, conscientiousness, emotional stability, openness to experiences) [27]. Then, they were informed they were 
going to see 20 videos of players describing gaming cards in front of iCub and that they had to judge each description as real or deceptive. 
After that, they saw an example of a video in which the falsely described card was presented in the top right corner. 

2.2.2 Lie Detection Survey 

After that, responders saw the 20 videos of card descriptions selected from the original Magic Trick card game. For each video, responders 
had to answer three questions: (i) whether the person in the video was lying or not (Yes or No answer); (ii) their confidence in this answer 
(slider from 0 to 100) and (iii) the reason why they provided such judgement. Responders could see the videos any time they wanted, but 
they could not go back after providing a judgment for a video. SurveyMonkey platform shuffled the videos for each responder to 
compensate for any order effect. 



 

 

 

 

2.2.3 Post-questionnaire 

Responders were presented with a list of common deceptive behaviors extracted from the literature [6]: uncertainty, an increasing number 
of stopwords, delay in providing an answer, repetitions and autocorrection, complexity of the answer, negativity, voice tone, eyebrows 
movements, touching the face, covering the mouth, avoiding mutual gaze, head wandering, fast body movements/breathing, eyes wide-
opened, and fake smile. Responders had to rate on a 7-points Likert scale how much they relied on each of them. Finally, responders could 
report any other method or cue they used in the survey.  

2.4 Participants  

163 responders (82 males, 78 females, 3 preferred to not answer), with an average age of 40 years (SD=16) took part in the online survey. 
Responders were recruited among authors’ colleagues and friends through word-to-mouth sharing, and they received no monetary 
compensation. They all accepted an informed consent form approved by the ethical committee of the Regione Liguria (Italy). They all 
agreed on using their data for scientific purposes. Among the 163 responders, only 117 completed the survey entirely. They were 54 males 
and 63 females (1 preferred to not answer) with an average age of 39 years (SD=14).  

3 Results 

Considering both truthful and deceptive descriptions, responders correctly guessed them with an accuracy score of 53.9% (SD=10.7%). 
Interestingly, nobody correctly guessed all the card descriptions, but the best performer reached an accuracy of 95%, missing the 
classification of a single video. Regarding confidence, responders reported an average confidence of 67.1% (SD=13.8%). A Shapiro-Wilk 
normality test showed that the confidence score is normally distributed, whilst the accuracy score is not. Therefore, in the following, a 
non-parametric analysis was conducted on the accuracy score and a parametric one on the confidence score.  

  

Figure 2: Average accuracy (Left) and confidence score (Right) for robot-easy and robot-difficult card descriptions. 

3.1 Comparison of the conditions  

Assuming detecting deception is a tougher task, we compared the accuracy score and the confidence of responders among truthful and 
deceptive card descriptions. Responders classified truthful descriptions with an accuracy score of M=52.8% (SD=16.1%) and deceptive 
descriptions with an accuracy of M=55.4% (SD=13.7%). Even if the score for false card descriptions is higher, a Wilcoxon signed-rank test 
did not reveal a significant difference (W(115)=1940, p=0.343). Also, the reported confidence between truthful and deceptive descriptions 
is not statistically different (t(115)=-1.59, p=0.115) with an average confidence of M=68.1% (SD=16.6%) for truthful descriptions against an 
average confidence of M=69.7% (SD=13.8%) for deceptive ones. 

More interesting is the comparison between robot-easy and robot-difficult card descriptions. As a remark, this concept is defined from 
iCub’s perspective: we selected the robot-easy descriptions among the ones iCub correctly classified, while the robot-difficult ones where 



   

 

 

chosen among the ones for which iCub failed the classification. Interestingly, responders achieved a statistically higher score on robot-
difficult card descriptions (M=58.4%, SD=15.1%) with respect to the robot-easy ones (M=49.6%, SD=14.9%), as proved by a Wilcoxon signed-
rank test (W(115)=3373, p<0.001) (see Fig. 2, Left). Moreover, the reported confidence also follows a similar pattern, with statistically higher 
confidence for robot-difficult card descriptions (M=70.2%, SD=14.5) with respect to robot-easy ones (M=67.6%, SD=16.3). We confirmed it 
with a paired t-test (t(115)=2.42, p=0.017) (see Fig. 2, Right). 

Also, we compared the accuracy score and the confidence score within each condition.  A Wilcoxon signed-rank test showed a statistically 
higher score for false-robot-difficult descriptions with respect to false-robot-easy ones (W(103)=952, p<0.001). Conversely, there is no 
significant statistical difference among true-robot-difficult and true-robot-easy card descriptions (W(103)=1103, p=0.117). Regarding the 
reported confidence, responders were more confident for true-robot-difficult descriptions with respect to true-robot-easy ones with a 
statistically significant difference (t(103)=3.485, p<0.001); however, we did not find any statistical difference among false-robot-difficult and 
false-robot-easy card descriptions (t(103)=0.553, p=0.581). 

Finally, we explored the correlation between the average confidence and the average accuracy score for each video. We fit a linear 
regression model with the average accuracy score as the dependent variable and the average confidence as the independent variable. 
Results show that the average confidence score inversely correlates with the average accuracy score (t(19)=-0.084, p=0.024, Adj R2=0.21). 
We also tested whether the videos’ duration correlated with their accuracy score or the average confidence, but we did not find any 
significant result.  

3.3 Responders vs iCub performances  

As specified in section 2.2, the videos were selected to be half among the ones that the iCub correctly classified during the game (robot-
easy) and a half among the ones the robot misclassified (robot-difficult). However, after the full data collection of the game was completed, 
we could post-hoc train an algorithm, based on a larger dataset, which led to improved performances in iCub’s lie detection.  To better 
compare iCub’s and responders’ performance we assessed what performance would iCub have had, based on the new algorithm. . We 
exploited the pupillometry data collected for the N=34 players of the original Magic Trick card game [8], [16]. During the game, iCub asked 
players to describe 6 cards with a pointing gesture. The player was instructed to take the card as iCub pointed it, describe it while keeping 
it in the hands, and finally place it back on a marker on the table. During the whole interaction, participants wore a Tobii Pro Glasses 2 
eyetracker, recording their pupillometry at 100 Hz. Post-hoc, we cleaned and segmented the pupillometry data for each pointing and card 
description and applied a baseline correction, subtracting to each segment the average pupil dilation during the 5 seconds before the 
relative iCub’s pointing. Then, for each card, we computed the mean, max, min and standard deviation of the pupil dilation, along with 
the duration during the pointing, the card description, and the whole interval. The result is a dataset of 15 features for 228 cards. We split 
this dataset considering the 20 card descriptions presented in the survey as test set and the remaining as training set. We then trained a 
random forest classifier with the best hyperparameters selected in [8]. If iCub had embedded the model during the Magic Trick card game, 
it would have correctly classified the 20 card descriptions with an accuracy, precision, recall and F1 score of 70%. We statistically compared 
this 70% accuracy score with respect to the 53.9% average accuracy of the responders; results show the accuracy score of the random forest 
is higher, however, this difference is not statistically significant (z=1.43, p=0.07). Also, we tested the new model on robot-easy and robot-
difficult card descriptions: results show it can classify robot-easy card descriptions with an accuracy of 90%, a performance consistent with 
the in-game results and statistically higher than humans’ performance (49.6%) on those videos (z=2.57, p=0.005). However, on robot-difficult 
videos it still performs worst than humans (50% for iCub against 58.4% for humans), even if the difference is not statistically significant 
(z=0.55, p=0.29). 

3.2 Pre-questionnaire analysis  

We then explored whether responders’ personality traits influenced their performance or confidence in the online survey. From the Ten-
Items Personality Inventory (TIPI), filled in before the survey, participants average scores were: Agreeableness: M=5.11, SD=1.08; 
Conscientiousness: M=5.12, SD=1.59; Emotional Stability: M=4.52, SD=1.39; Openness to experiences: M=4.66, SD=1.05 and Extraversion: 
M=4.0, SD=1.41. We fit two multiple linear regression models with the personality traits as independent variables and the average accuracy 
score or the average confidence for each responder as the dependent variable. Results show that only emotional stability correlates 
significantly with the average accuracy score (t=0.022, p=0.004, Adj R2=0.046). Also, a comparison of the confidence and accuracy score 
among male and female responders showed no relevant results. Finally, we fit two linear regression models with responders’ age as the 
independent variable and the confidence or accuracy score as the dependent variable but we did not find any significant effect. 



 

 

 

 

3.4 Motivations and Post-Questionnaire analysis 

Other than classifying each card description as truthful or deceptive, responders were asked to report the motivation which drove their 
decisions. We applied a stopword filter and a lemmatization to clean the reported motivations. From a qualitative analysis, responders 
focused more on how the actor described the card, reporting words like “precise”, “details”, “confident”, “sincere”, “thinking”, “quick”, 
“pauses”, “short”, “fluid”, “time”, “(un)decided”. Also, responders reported elements related to what they were looking at with words like: 
“looking”, “gaze”, “voice”, “hands”, “touch”, “smiling”, “laughing”, “face”, “eye”, “leg”. Comparing the motivations of truthful and deceptive 
videos or robot-easy and robot-difficult ones did not reveal any clear difference.  

Also, we run a deeper analysis on the motivations reported by the responder which achieved an accuracy score of 95%. We did not assess 
the profession of the responder; hence we could not know if he is an expert or a professional on lie detection, still, he was the best on the 
task. Looking at his motivations we found he focused on three main features: (i) the fluidity of the communication (i.e., the complexity of 
the speech, the rephrasing, or the presence of “hmmm”s); (ii) the consistency between verbal communication and body movements (i.e., 
moving the body from right to left); (iii) the injection of emotional or personal thought on the card description. Interestingly, he used the 
presence of reflection pauses as a criterion to classify card descriptions as truthful – he reported it on 8 cards over 10. Lastly, he classified 
all the deceptive card descriptions as so, but he misclassified one of the true cards: he has been fooled by a leg movement, a potential sign 
of stress. 

After the survey, we asked responders to rate on a 7-points Likert scale how much they relied on the state-of-the-art methods used to 
detect a liar; also, we asked them to report any other method they rely on. The complexity of the description (M=4.89, SD=1.62), presence 
of stopwords (M=4.68, SD=1.61), the uncertainty of the description (M=4.67, SD=1.69), fake smiling (M=4.65, SD=1.79), voice tone (M=4.54, 
SD=1.77), absence of mutual gaze (M=4.27, SD=2.01), fast movements and breathing (M=4.07, SD=1.83), touching nose or face (M=4.01, 
SD=2.02) were the most used ones. Then head movements (M=3.78, SD=1.84), repetitions and autocorrections (M=3.78, SD=1.84), 
description time (M=3.72, SD=1.05), eyebrow movements (M=3.4, SD=1.69), covering the mouth (M=3.28, SD=1.98), eye movements 
(M=3.14, SD=1.89), and negative words in the description (M=2.73, SD=1.55) follow. Finally, a few responders reported other features used 
to detect liars: 9 responders took into account the amount of body movement, the impossibility to stay still, or the position of leg and 
hands; also 8 responders focused more on the content of the descriptions rather than on the visual appearance like too creative descriptions, 
a high number of details or adjectives, or a feeling of premeditation of the description. 

4 Discussion 

In this study, we compared human and robot performances on detecting lies during an informal interaction and explored which behavioral 
cues are used with the purpose to improve our system. Being able to detect lies in a real-world informal scenario is a mandatory 
requirement to port lie detection methods out of laboratory scenarios. Even if state-of-the-art methods work on constrained and formal 
setups, they usually depend on cumbersome devices and lack the intuition and experience that makes humans able to detect liars. In this 
manuscript, we explored what robots should look at to overcome that limitation. To do so, we ran an online survey where responders had 
to classify a set of videos, recorded during an informal game-like human-robot interaction from iCub humanoid robot point of view, as 
truthful or deceptive. We also asked for each video the confidence on the classification and an open-ended motivation of what led the 
decision. 

Responders achieved an accuracy score of 53.9% on classifying deceptive and truthful card descriptions, which is consistent with the 
average 54% from the literature [19]. Also, they outperformed iCub achieving better performance on robot-difficult than on robot-easy card 
descriptions. To run a fairer comparison between iCub and responders’ performances, we trained a random forest classifier on the 
pupillometry data collected during the original Magic Trick card game. Testing the model on the 20 card descriptions of the survey 
(excluded from the training set) revealed an accuracy score of 70%, higher than the average score of humans (53.9%) even if not statistically 
higher. As a remark, each player of the magic trick described 6 cards to iCub, but we excluded from the training set only the card 
descriptions used in the survey, not the whole participants. Hence, the random forest classifier embeds a little information on the actors it 
classifies in the test set. We took this decision to replicate the population of actors and responders of the survey. Indeed, most of the actors 
and most of the responders were internal confederates and we cannot exclude they know each other; hence it is possible that a subset of 
the responders had some prior knowledge on how the actors lie or tell the truth, even if we cannot spot those connections due to the 
anonymization of the data. 

Looking at the reported motivations for each video and at the end of the survey, we have an insight into what a social robot should look 
at to improve its lie detection abilities. Responders mainly pointed out two major aspects to take into account: (i) how the actor described 
the card (i.e., “quick”, “(un)decided”, “precise”, “fluid”); and (ii) what to look at (i.e., “face”, “gaze”, “hand”, “leg”, “smile”). Those motivations 



   

 

 

are supported and extended by the ratings at the end of the survey: responders focused mainly on (i) the content, fluidity, and complexity 
of the descriptions; and (ii) on the body movements of the actors. Interestingly, responders focused less on facial features postural features 
than what was expected from the literature. We speculate this depends on the setup in which the videos were acquired: participants wore 
a Tobii eyetracker which, partially cover their face, and sat behind a table covering their lower bodies. Also, actors mostly looked to the 
cards they were holding in their hands rather than looking to iCub. Still, motivations and final ratings suggest a combination of visual and 
prosodic features could be a good candidate to improve iCub’s lie detection performances on real-life informal scenarios, as also supported 
by the literature [28]. Moreover, those features could be extracted from the devices (i.e., RGB cameras and stereo microphones) already 
equipped on the iCub humanoid robot. Overall, the reported motivations suggest that both the behaviors of the actors and the qualities of 
such behaviors (including expressive, emotional facets) have an important role in detecting lies so that the robot should also be endowed 
with techniques for detecting behavior and for analyzing their expressive qualities. 

From our results, we could say that what is “difficult” for a robot that embeds a pupillometry-based technical solution is “easy” for humans 
that use behavioral cues and vice versa. This might happen because when lying some actors rely on special behaviors (e.g. pauses, body 
motions, slowing down.) to reduce the cognitive load, in turn minimizing the pupillary change associated with the latter. In these cases, a 
robot focusing on pupillometry alone could never realize that the partner is lying. Conversely, a keen human observer could notice these 
tell-tale signs, most probably missing instead the cases in which only the pupil variation reveals the deception. Hence, we speculate the 
cooperation of those two systems will be a key factor for future developments of lie detection in human-robot interaction. To improve, a 
robot should be able to “look at humans as other humans do” combining our fuzzy evaluation with the rigour of technical and physiological 
metrics. 

In the future, it would be interesting to integrate our pupil-based approach with the processing of visual features (i.e. body posture, body 
movements, or facial expression) and audio features (i.e., word embedding or prosodic analysis of the descriptions). To validate such 
multimodal system on our setup, aiming to port it to a real-world scenario, it would be mandatory to overcome the limitation posed by 
the Tobii Pro Glasses 2 eyetracker since it partially occludes actors’ faces, limiting the usage of visual features. Recent findings [29] suggest 
it will be soon possible to measure pupillometric features with common RGB cameras like the ones embedded on the iCub robotic platform. 
Finally, it would be necessary to push the research field to more ecological and real-life scenarios. Indeed, most of the state-of-the-art 
research focus on strict and interrogatory-like setups that for sure happen in the real world; however, they represent a strict subset of the 
variety of interaction that happens and in which both humans and robot could take advantage from detecting lies. For instance, a more 
portable lie detector system could help in airports or sensible buildings to prevent dangerous situations; while a social robot could use it 
to better understand humans, give reason to human behaviors, assess their trustworthiness, and provide better support in professions like 
teaching, caregiving, or law enforcing. 

5 Conclusion 

In this work, we assessed humans’ performance on detecting lies in an informal scenario and compared them with iCub’s performance. 
Responders had a similar performance as iCub but showed a significantly better performance in those videos which resulted more difficult 
for the robot, than in those I iCub classified correctly. Integrating iCub’s pupillometry-based approach and humans’ behavioral-cues-based 
approach could be the key solution to improve lie detection in human-robot interaction. Robots able to detect lies “from a human point of 
view” could better support humans in roles professions like teaching, caregiving or law enforcement, other than improve their ability to 
interact socially with human partners. In our view, these aspects will deserve further investigation e.g., in the framework of emerging 
research areas such as Human-Centered Artificial Intelligence and hybrid intelligence human-robot communities. 
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