Journal article Open Access

Performance of Adder Architectures on Encrypted Integers

Paulin Boale B.; Simon Ntumba B.; Eugene Mbuyi MThe fully Homomorphic encryption scheme is corner stone of privacy in an increasingly connected world. It allows to perform all kinds of computations on encrypted data. Although, time of computations is bottleneck of numerous applications of real life. In this paper, a brief description is made on the homomorphic encryption scheme TFHE of Illaria Chillota and the others. TFHE, implemented in c language in a library, improves the bootstrapping execution time of the FHEW scheme to 13 milliseconds. TFHE performs homomorphic processing on a multitude of logic gates. This variety made it possible to construct, implement five adder architectures and compare them in terms of the execution time of the bootstrapping per logic gate. In a singleprocessor computing environment, the Carry Look-ahead Adder completed a two-integer addition in 90 seconds, whereas the Ripple carry Adder did the same processing in 109 seconds. An improvement in processing time of 15% is observed. And, the same ratio of about 15% was obtained on four integers, respectively for 279 seconds for the first adder and 320 seconds for Wallace's dedicated adder. While in the dual-processor environment, a 50% improvement was seen on all adders in the same processing on integers. The Carry Look-ahead Adder saw his handling improved by the sum of two numbers from 90 seconds to 46 seconds and four numbers from 279 seconds to 139 seconds, respectively. Keywords: fully Homomorphic encryption, bootstrapping, logic gate, binary adder.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5415214</identifier>
  <creators>
    <creator>
      <creatorName>Paulin Boale B.</creatorName>
      <affiliation>Lecturer &amp; Ph.D, Department of Mathematics and Computers Sciences. University of Kinshasa. Congo - Kinshasa</affiliation>
    </creator>
    <creator>
      <creatorName>Simon Ntumba B.</creatorName>
      <affiliation>Professor and head Department of Mathematic and Computers Sciences University of Kinshasa. Congo - Kinshasa</affiliation>
    </creator>
    <creator>
      <creatorName>Eugene Mbuyi MThe fully Homomorphic encryption scheme is corner stone of privacy in an increasingly connected world. It allows to perform all kinds of computations on encrypted data. Although, time of computations is bottleneck of numerous applications of real life. In this paper, a brief description is made on the homomorphic encryption scheme TFHE of Illaria Chillota and the others. TFHE, implemented in c language in a library, improves the bootstrapping execution time of the FHEW scheme to 13 milliseconds. TFHE performs homomorphic processing on a multitude of logic gates. This variety made it possible to construct, implement five adder architectures and compare them in terms of the execution time of the bootstrapping per logic gate. In a singleprocessor computing environment, the Carry Look-ahead Adder completed a two-integer addition in 90 seconds, whereas the Ripple carry Adder did the same processing in 109 seconds. An improvement in processing time of 15% is observed. And, the same ratio of about 15% was obtained on four integers, respectively for 279 seconds for the first adder and 320 seconds for Wallace's dedicated adder. While in the dual-processor environment, a 50% improvement was seen on all adders in the same processing on integers. The Carry Look-ahead Adder saw his handling improved by the sum of two numbers from 90 seconds to 46 seconds and four numbers from 279 seconds to 139 seconds, respectively. Keywords: fully Homomorphic encryption, bootstrapping, logic gate, binary adder.</creatorName>
      <affiliation>Professor, Department of Mathematic and Computers Sciences University of Kinshasa. Congo - Kinshasa</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Performance of Adder Architectures on Encrypted Integers</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>fully Homomorphic encryption, bootstrapping, logic gate, binary adder.</subject>
    <subject subjectScheme="issn">2249-8958</subject>
    <subject subjectScheme="handle">100.1/ijeat.F30830810621</subject>
  </subjects>
  <contributors>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering  and Sciences Publication (BEIESP)</contributorName>
      <affiliation>Publisher</affiliation>
    </contributor>
  </contributors>
  <dates>
    <date dateType="Issued">2021-08-30</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5415214</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2249-8958</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijeat.F3083.0810621</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The fully Homomorphic encryption scheme is corner stone of privacy in an increasingly connected world. It allows to perform all kinds of computations on encrypted data. Although, time of computations is bottleneck of numerous applications of real life. In this paper, a brief description is made on the homomorphic encryption scheme TFHE of Illaria Chillota and the others. TFHE, implemented in c language in a library, improves the bootstrapping execution time of the FHEW scheme to 13 milliseconds. TFHE performs homomorphic processing on a multitude of logic gates. This variety made it possible to construct, implement five adder architectures and compare them in terms of the execution time of the bootstrapping per logic gate. In a single processor computing environment, the Carry Look-ahead Adder completed a two-integer addition in 90 seconds, whereas the Ripple carry Adder did the same processing in 109 seconds. An improvement in processing time of 15% is observed. And, the same ratio of about 15% was obtained on four integers, respectively for 279 seconds for the first adder and 320 seconds for Wallace&amp;#39;s dedicated adder. While in the dual-processor environment, a 50% improvement was seen on all adders in the same processing on integers. The Carry Look-ahead Adder saw his handling improved by the sum of two numbers from 90 seconds to 46 seconds and four numbers from 279 seconds to 139 seconds, respectively.&lt;/p&gt;</description>
  </descriptions>
</resource>
17
19
views
downloads
Views 17
Downloads 19
Data volume 8.5 MB
Unique views 15
Unique downloads 17

Share

Cite as