Journal article Open Access

Detection of Sickle Cell Anemia Through Contour Evidence Extraction and Estimation

Aruna N S.; Dr. Hariharan S.

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Sickle cell anemia, Seed point, contour extraction, contour estimation.</subfield>
  <controlfield tag="005">20210904014827.0</controlfield>
  <controlfield tag="001">5414952</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Electrical Engineering, College of Engineering Trivandrum, Kerala, India</subfield>
    <subfield code="a">Dr. Hariharan S.</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication (BEIESP)</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">819828</subfield>
    <subfield code="z">md5:4a4f1446803ffba0e46ecb22b49207c2</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-08-30</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">182-191</subfield>
    <subfield code="n">6</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">10</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Electrical Engineering, College of Engineering Trivandrum, Kerala, India.</subfield>
    <subfield code="a">Aruna N S.</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Detection of Sickle Cell Anemia Through Contour Evidence Extraction and Estimation</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)F30760810621/2021©BEIESP</subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Diagnosis of sickle cell anemia by manual visual inspection through microscope is time consuming and causes human errors. Observational errors occur mostly due to overlapping of cells in blood smear image. Here, an automatic segmentation approach is introduced which isolates sickle cells from all other cells within a blood sample. The proposed system is an approach to find the elliptically shaped sickle cells through geometric feature extraction and contour based segmentation to isolate sickle cells. This technique is a method of isolating sickle cells from other cells within blood sample using cell morphology. A combined approach of extraction of seed points, contour extraction and estimation of contours is used for separation of sickle cells from red blood cells. The methods used for the extraction of seed points are by Ultimate Erosion for Convex Sets and Fast Radial Symmetry transform. The contour evidence is extracted by associating edges of the cells to the seed points. The overlapping and clustered cells in image are identified using ellipse fitting method for contour estimation. Using the seed points and the contour extraction, the edges of the cells are estimated. The lines joining the shape of cells are drawn through estimation of shape of contour. This eliminates cells other than elliptical shaped cells. The proposed system can successfully isolate sickle cells from healthy blood cells within the blood smear image. This automated system has a better accuracy and faster computation speed compared to the existing methods for the detection of sickle cells. This identification methodology helps the health professionals for faster diagnosis. Keywords :Sickle cell anemia, Seed point, contour extraction, contour estimation.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.F3076. 0810621</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 14
Downloads 15
Data volume 12.3 MB
Unique views 13
Unique downloads 14


Cite as