Journal article Open Access

Hybrid Regularization Algorithm for Efficient Image Deblurring

Pooja S.; Mallikarjunaswamy S.; Sharmila N.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Image Priors, Maximum A Posteriori Estimation, Regularization</subfield>
  </datafield>
  <controlfield tag="005">20210904014825.0</controlfield>
  <controlfield tag="001">5414102</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Assistant Professor, Department of ECE, JSS  Academy of Technical Education, Bengaluru, India.</subfield>
    <subfield code="a">Mallikarjunaswamy S.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Assistant Professor, Department of ECE, RNSIT, Bengaluru, India.</subfield>
    <subfield code="a">Sharmila N.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication (BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">716519</subfield>
    <subfield code="z">md5:e62d714f9f8ae9e5eb11ac119c586181</subfield>
    <subfield code="u">https://zenodo.org/record/5414102/files/F29980810621.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-08-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5414102</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">141-147</subfield>
    <subfield code="n">6</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">10</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Assistant Professor, Department of ECE, K.S. Institute of Technology, Bengaluru, India.</subfield>
    <subfield code="a">Pooja S.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Hybrid Regularization Algorithm for Efficient Image Deblurring</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijeat.F29980810621</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Abstract: Image deblurring is a challenging illposed problem with widespread applications. Most existing deblurring methods make use of image priors or priors on the PSF to achieve accurate results. The performance of these methods depends on various factors such as the presence of well-lit conditions in the case of dark image priors and in case of statistical image priors the assumption the image follows a certain distribution might not be fully accurate. This holds for statistical priors used on the blur kernel as well. The aim of this paper is to propose a novel image deblurring method which can be readily extended to various applications such that it effectively deblurs the image irrespective of the various factors affecting its capture. A hybrid regularization method is proposed which uses a TV regularization framework with varying sparsity inducing priors. The edges of the image are accurately recovered due to the TV regularization. The sparsity prior is implemented through a dictionary such that varying weights of sparsity is induced based on the different image regions. This helps in smoothing the unwanted artifacts generated due to blur in the uniform regions of the image.&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.F2998.0810621</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
28
21
views
downloads
Views 28
Downloads 21
Data volume 15.0 MB
Unique views 23
Unique downloads 21

Share

Cite as