Journal article Open Access

On the Solutions of Diophantine Equation (Mp − 2) x + (Mp + 2) y = z 2 where Mp is Mersenne Prime

Vipawadee Moonchaisook


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Diophantine equations, exponential equations.</subfield>
  </datafield>
  <controlfield tag="005">20210904014840.0</controlfield>
  <controlfield tag="001">5414068</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">280315</subfield>
    <subfield code="z">md5:a3b2db66e3e24ea17eeef1d4af74b724</subfield>
    <subfield code="u">https://zenodo.org/record/5414068/files/D0216063421.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-08-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5414068</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1-3</subfield>
    <subfield code="n">4</subfield>
    <subfield code="p">International Journal of Basic Sciences and Applied Computing (IJBSAC)</subfield>
    <subfield code="v">3</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">, Department of Mathematics, Faculty of Science and Technology Surindra Rajabhat University, Surin, Thailand.</subfield>
    <subfield code="a">Vipawadee Moonchaisook</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">On the Solutions of Diophantine Equation (Mp − 2) x + (Mp + 2) y = z 2 where Mp is Mersenne Prime</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2394-367X</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijbsac.D0216063421</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The Diophantine equation has been studied by many researchers in number theory because it helps in solving variety of complicated puzzle problems. From several studies, many interesting proofs have been found. In this paper, the researcher has examined the solutions of Diophantine equation (𝑴𝒑 &amp;minus; 𝟐) 𝒙 + (𝑴𝒑 + 𝟐) 𝒚 = 𝒛 𝟐 where 𝑴𝒑 is a Mersenne Prime and p is an odd prime whereas x, y and z are nonnegative integers. It was found that this Diophantine equation has no solution.&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2394-367X</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijbsac.D0216.083421</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
21
18
views
downloads
Views 21
Downloads 18
Data volume 5.0 MB
Unique views 18
Unique downloads 16

Share

Cite as