Journal article Open Access

On the Solutions of Diophantine Equation (Mp − 2) x + (Mp + 2) y = z 2 where Mp is Mersenne Prime

Vipawadee Moonchaisook


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/0443e59e-ece7-4570-aa35-fba67533c69a/D0216063421.pdf"
      }, 
      "checksum": "md5:a3b2db66e3e24ea17eeef1d4af74b724", 
      "bucket": "0443e59e-ece7-4570-aa35-fba67533c69a", 
      "key": "D0216063421.pdf", 
      "type": "pdf", 
      "size": 280315
    }
  ], 
  "owners": [
    251664
  ], 
  "doi": "10.35940/ijbsac.D0216.083421", 
  "stats": {
    "version_unique_downloads": 16.0, 
    "unique_views": 18.0, 
    "views": 21.0, 
    "version_views": 21.0, 
    "unique_downloads": 16.0, 
    "version_unique_views": 18.0, 
    "volume": 5045670.0, 
    "version_downloads": 18.0, 
    "downloads": 18.0, 
    "version_volume": 5045670.0
  }, 
  "links": {
    "doi": "https://doi.org/10.35940/ijbsac.D0216.083421", 
    "latest_html": "https://zenodo.org/record/5414068", 
    "bucket": "https://zenodo.org/api/files/0443e59e-ece7-4570-aa35-fba67533c69a", 
    "badge": "https://zenodo.org/badge/doi/10.35940/ijbsac.D0216.083421.svg", 
    "html": "https://zenodo.org/record/5414068", 
    "latest": "https://zenodo.org/api/records/5414068"
  }, 
  "created": "2021-09-03T11:22:40.315406+00:00", 
  "updated": "2021-09-04T01:48:40.525576+00:00", 
  "conceptrecid": "5414067", 
  "revision": 2, 
  "id": 5414068, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.35940/ijbsac.D0216.083421", 
    "description": "<p>The Diophantine equation has been studied by many researchers in number theory because it helps in solving variety of complicated puzzle problems. From several studies, many interesting proofs have been found. In this paper, the researcher has examined the solutions of Diophantine equation (\ud835\udc74\ud835\udc91 &minus; \ud835\udfd0) \ud835\udc99 + (\ud835\udc74\ud835\udc91 + \ud835\udfd0) \ud835\udc9a = \ud835\udc9b \ud835\udfd0 where \ud835\udc74\ud835\udc91 is a Mersenne Prime and p is an odd prime whereas x, y and z are nonnegative integers. It was found that this Diophantine equation has no solution.&nbsp;</p>", 
    "contributors": [
      {
        "affiliation": "Publisher", 
        "type": "Sponsor", 
        "name": "Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)"
      }
    ], 
    "title": "On the Solutions of Diophantine Equation (Mp \u2212 2) x + (Mp + 2) y = z 2 where Mp is Mersenne Prime", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "journal": {
      "volume": "3", 
      "issue": "4", 
      "pages": "1-3", 
      "title": "International Journal of Basic Sciences and Applied Computing (IJBSAC)"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "5414067"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5414068"
          }
        }
      ]
    }, 
    "language": "eng", 
    "subjects": [
      {
        "term": "ISSN", 
        "scheme": "issn", 
        "identifier": "2394-367X"
      }, 
      {
        "term": "Retrieval Number", 
        "scheme": "handle", 
        "identifier": "100.1/ijbsac.D0216063421"
      }
    ], 
    "keywords": [
      "Diophantine equations, exponential equations."
    ], 
    "publication_date": "2021-08-30", 
    "creators": [
      {
        "affiliation": ", Department of Mathematics, Faculty of Science and Technology Surindra Rajabhat University, Surin, Thailand.", 
        "name": "Vipawadee Moonchaisook"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }, 
    "related_identifiers": [
      {
        "scheme": "issn", 
        "identifier": "2394-367X", 
        "relation": "isCitedBy", 
        "resource_type": "publication-article"
      }
    ]
  }
}
21
18
views
downloads
Views 21
Downloads 18
Data volume 5.0 MB
Unique views 18
Unique downloads 16

Share

Cite as