Journal article Open Access

On the Solutions of Diophantine Equation (Mp − 2) x + (Mp + 2) y = z 2 where Mp is Mersenne Prime

Vipawadee Moonchaisook

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="URL"></identifier>
      <creatorName>Vipawadee Moonchaisook</creatorName>
      <affiliation>, Department of Mathematics, Faculty of Science and Technology Surindra Rajabhat University, Surin, Thailand.</affiliation>
    <title>On the Solutions of Diophantine Equation (Mp − 2) x + (Mp + 2) y = z 2 where Mp is Mersenne Prime</title>
    <subject>Diophantine equations, exponential equations.</subject>
    <subject subjectScheme="issn">2394-367X</subject>
    <subject subjectScheme="handle">100.1/ijbsac.D0216063421</subject>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)</contributorName>
    <date dateType="Issued">2021-08-30</date>
  <resourceType resourceTypeGeneral="JournalArticle"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2394-367X</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijbsac.D0216.083421</relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;The Diophantine equation has been studied by many researchers in number theory because it helps in solving variety of complicated puzzle problems. From several studies, many interesting proofs have been found. In this paper, the researcher has examined the solutions of Diophantine equation (𝑴𝒑 &amp;minus; 𝟐) 𝒙 + (𝑴𝒑 + 𝟐) 𝒚 = 𝒛 𝟐 where 𝑴𝒑 is a Mersenne Prime and p is an odd prime whereas x, y and z are nonnegative integers. It was found that this Diophantine equation has no solution.&amp;nbsp;&lt;/p&gt;</description>
Views 21
Downloads 18
Data volume 5.0 MB
Unique views 18
Unique downloads 16


Cite as