Journal article Open Access

Sliding Mode with Adaptive Control of Robot Manipulator Trajectory Tracking using Neural Network Approximation

Monisha Pathak; Mrinal Buragohain


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5411870</identifier>
  <creators>
    <creator>
      <creatorName>Monisha Pathak</creatorName>
      <affiliation>Department of Instrumentation Engineering, Jorhat Engineering College, Jorhat, Assam, India.</affiliation>
    </creator>
    <creator>
      <creatorName>Mrinal Buragohain</creatorName>
      <affiliation>Department of Electrical Engineering, Jorhat Engineering College, Jorhat, Assam, India.</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Sliding Mode with Adaptive Control of Robot Manipulator Trajectory Tracking using Neural Network Approximation</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>Sliding Mode Control, Robot manipulator,  Trajectory Tracking, Neural Network.</subject>
    <subject subjectScheme="issn">2249-8958</subject>
    <subject subjectScheme="handle">100.1/ijeat.F30050810621</subject>
  </subjects>
  <contributors>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering  and Sciences Publication (BEIESP)</contributorName>
      <affiliation>Publisher</affiliation>
    </contributor>
  </contributors>
  <dates>
    <date dateType="Issued">2021-08-30</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5411870</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2249-8958</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijeat.F3005.0810621</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This paper briefly discusses about the Robust Controller based on Adaptive Sliding Mode Technique with RBF Neural Network (ASMCNN) for Robotic Manipulator tracking control in presence of uncertainities and disturbances. The aim is to design an effective trajectory tracking controller without any modelling information. The ASMCNN is designed to have robust trajectory tracking of Robot Manipulator, which combines Neural Network Estimation with Adaptive Sliding Mode Control. The RBF model is utilised to construct a Lyapunov function-based adaptive control approach. Simulation of the tracking control of a 2dof Robotic Manipulator in the presence of unpredictability and external disruption demonstrates the usefulness of the planned ASMCNN.&lt;/p&gt;</description>
  </descriptions>
</resource>
16
18
views
downloads
Views 16
Downloads 18
Data volume 9.9 MB
Unique views 15
Unique downloads 18

Share

Cite as