Journal article Open Access

An Optimized way to Solve Regression Problems

Jyothi Vishnu Vardhan Kolla; Poorna Chandra Vemula; Vanapala Sai Mohit

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Regression, Data processing, Noisy data, Random  sampling.</subfield>
  <controlfield tag="005">20210904014825.0</controlfield>
  <controlfield tag="001">5411305</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Pursuing, Bachelors of Technology, Department of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu</subfield>
    <subfield code="a">Poorna Chandra Vemula</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Pursuing, Bachelors of Technology, Department of Computer Science and Engineering, Gitam Institute of Technology, Visakhapatnam, Andhra Pradesh</subfield>
    <subfield code="a">Vanapala Sai Mohit</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication (BEIESP)</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">548758</subfield>
    <subfield code="z">md5:643e19cb9180e2e7971abcfde6dc380f</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-08-30</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">61-65</subfield>
    <subfield code="n">6</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT</subfield>
    <subfield code="v">10</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Pursuing, BTech, Department of Computer Science and Engineering, Gitam university vishakapatnam, Andhra Pradesh</subfield>
    <subfield code="a">Jyothi Vishnu Vardhan Kolla</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">An Optimized way to Solve Regression Problems</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijeat.E28730610521</subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In many real world scenarios, regression is a commonly used technique to predict continuous variables. In case of noisy(inconsistent) and incomplete datasets, a large number of previous works adopted complex non traditional machine learning approaches in order to get accurate predictions. However, compromising on time and space overheads. In this paper, we work with complex data yet by using traditional machine learning regression algorithms by working on data cleaning and data transformation according to the working principle of those machine learning algorithms.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.E2873.0810621</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 36
Downloads 17
Data volume 9.3 MB
Unique views 36
Unique downloads 17


Cite as