Journal article Open Access

An Optimized way to Solve Regression Problems

Jyothi Vishnu Vardhan Kolla; Poorna Chandra Vemula; Vanapala Sai Mohit


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/befa679c-d75d-4bb0-8a09-fa00a9621357/E28730610521.pdf"
      }, 
      "checksum": "md5:643e19cb9180e2e7971abcfde6dc380f", 
      "bucket": "befa679c-d75d-4bb0-8a09-fa00a9621357", 
      "key": "E28730610521.pdf", 
      "type": "pdf", 
      "size": 548758
    }
  ], 
  "owners": [
    251627
  ], 
  "doi": "10.35940/ijeat.E2873.0810621", 
  "stats": {
    "version_unique_downloads": 17.0, 
    "unique_views": 36.0, 
    "views": 36.0, 
    "version_views": 36.0, 
    "unique_downloads": 17.0, 
    "version_unique_views": 36.0, 
    "volume": 9328886.0, 
    "version_downloads": 17.0, 
    "downloads": 17.0, 
    "version_volume": 9328886.0
  }, 
  "links": {
    "doi": "https://doi.org/10.35940/ijeat.E2873.0810621", 
    "latest_html": "https://zenodo.org/record/5411305", 
    "bucket": "https://zenodo.org/api/files/befa679c-d75d-4bb0-8a09-fa00a9621357", 
    "badge": "https://zenodo.org/badge/doi/10.35940/ijeat.E2873.0810621.svg", 
    "html": "https://zenodo.org/record/5411305", 
    "latest": "https://zenodo.org/api/records/5411305"
  }, 
  "created": "2021-09-03T09:19:06.876516+00:00", 
  "updated": "2021-09-04T01:48:25.821504+00:00", 
  "conceptrecid": "5411304", 
  "revision": 2, 
  "id": 5411305, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.35940/ijeat.E2873.0810621", 
    "description": "<p>In many real world scenarios, regression is a commonly used technique to predict continuous variables. In case of noisy(inconsistent) and incomplete datasets, a large number of previous works adopted complex non traditional machine learning approaches in order to get accurate predictions. However, compromising on time and space overheads. In this paper, we work with complex data yet by using traditional machine learning regression algorithms by working on data cleaning and data transformation according to the working principle of those machine learning algorithms.</p>", 
    "contributors": [
      {
        "affiliation": "Publisher", 
        "type": "Sponsor", 
        "name": "Blue Eyes Intelligence Engineering  and Sciences Publication (BEIESP)"
      }
    ], 
    "title": "An Optimized way to Solve Regression Problems", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "journal": {
      "volume": "10", 
      "issue": "6", 
      "pages": "61-65", 
      "title": "International Journal of Engineering and Advanced Technology (IJEAT"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "5411304"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5411305"
          }
        }
      ]
    }, 
    "language": "eng", 
    "subjects": [
      {
        "term": "ISSN", 
        "scheme": "issn", 
        "identifier": "2249-8958"
      }, 
      {
        "term": "Retrieval Number", 
        "scheme": "handle", 
        "identifier": "100.1/ijeat.E28730610521"
      }
    ], 
    "keywords": [
      "Regression, Data processing, Noisy data, Random  sampling."
    ], 
    "publication_date": "2021-08-30", 
    "creators": [
      {
        "affiliation": "Pursuing, BTech, Department of Computer Science and Engineering, Gitam university vishakapatnam, Andhra Pradesh", 
        "name": "Jyothi Vishnu Vardhan Kolla"
      }, 
      {
        "affiliation": "Pursuing, Bachelors of Technology, Department of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu", 
        "name": "Poorna Chandra Vemula"
      }, 
      {
        "affiliation": "Pursuing, Bachelors of Technology, Department of Computer Science and Engineering, Gitam Institute of Technology, Visakhapatnam, Andhra Pradesh", 
        "name": "Vanapala Sai Mohit"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }, 
    "related_identifiers": [
      {
        "scheme": "issn", 
        "identifier": "2249-8958", 
        "relation": "isCitedBy", 
        "resource_type": "publication-article"
      }
    ]
  }
}
36
17
views
downloads
Views 36
Downloads 17
Data volume 9.3 MB
Unique views 36
Unique downloads 17

Share

Cite as