Journal article Open Access

Brain Tumor Segmentation and Classification using Multiple Feature Extraction and Convolutional Neural Networks

Tasmiya Tazeen; Mrinal Sarvagya


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Segmentation, Brain Tumor, Convolutional  Neural Network, Deep Learning.</subfield>
  </datafield>
  <controlfield tag="005">20210904014825.0</controlfield>
  <controlfield tag="001">5408324</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of Electronics and Communication Engineering, Reva University, Bengaluru-560064, India.</subfield>
    <subfield code="a">Mrinal Sarvagya</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication (BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">782085</subfield>
    <subfield code="z">md5:18b9c23a2f11e57d18f4c6980de5991c</subfield>
    <subfield code="u">https://zenodo.org/record/5408324/files/F29480810621.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-08-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5408324</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">23-27</subfield>
    <subfield code="n">6</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">10</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">School of Electronics and Communication Engineering, Reva University, Bengaluru-560064, India.</subfield>
    <subfield code="a">Tasmiya Tazeen</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Brain Tumor Segmentation and Classification using Multiple Feature Extraction and Convolutional Neural Networks</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijeat.F29480810621</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Intracranial tumors are a type of cancer that grows spontaneously inside the skull. Brain tumor is the cause for one in four deaths. Hence early detection of the tumor is important. For this aim, a variety of segmentation techniques are available. The fundamental disadvantage of present approaches is their low segmentation accuracy. With the help of magnetic resonance imaging (MRI), a preventive medical step of early detection and evaluation of brain tumor is done. Magnetic resonance imaging (MRI) offers detailed information on human delicate tissue, which aids in the diagnosis of a brain tumor. The proposed method in this paper is Brain Tumour Detection and Classification based on Ensembled Feature extraction and classification using CNN.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.F2948.0810621</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
26
20
views
downloads
Views 26
Downloads 20
Data volume 15.6 MB
Unique views 25
Unique downloads 19

Share

Cite as