Journal article Open Access
Tasmiya Tazeen; Mrinal Sarvagya
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Segmentation, Brain Tumor, Convolutional Neural Network, Deep Learning.</subfield> </datafield> <controlfield tag="005">20210904014825.0</controlfield> <controlfield tag="001">5408324</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">School of Electronics and Communication Engineering, Reva University, Bengaluru-560064, India.</subfield> <subfield code="a">Mrinal Sarvagya</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Publisher</subfield> <subfield code="4">spn</subfield> <subfield code="a">Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">782085</subfield> <subfield code="z">md5:18b9c23a2f11e57d18f4c6980de5991c</subfield> <subfield code="u">https://zenodo.org/record/5408324/files/F29480810621.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-08-30</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:5408324</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="c">23-27</subfield> <subfield code="n">6</subfield> <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield> <subfield code="v">10</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">School of Electronics and Communication Engineering, Reva University, Bengaluru-560064, India.</subfield> <subfield code="a">Tasmiya Tazeen</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Brain Tumor Segmentation and Classification using Multiple Feature Extraction and Convolutional Neural Networks</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="650" ind1="1" ind2=" "> <subfield code="a">ISSN</subfield> <subfield code="0">(issn)2249-8958</subfield> </datafield> <datafield tag="650" ind1="1" ind2=" "> <subfield code="a">Retrieval Number</subfield> <subfield code="0">(handle)100.1/ijeat.F29480810621</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Intracranial tumors are a type of cancer that grows spontaneously inside the skull. Brain tumor is the cause for one in four deaths. Hence early detection of the tumor is important. For this aim, a variety of segmentation techniques are available. The fundamental disadvantage of present approaches is their low segmentation accuracy. With the help of magnetic resonance imaging (MRI), a preventive medical step of early detection and evaluation of brain tumor is done. Magnetic resonance imaging (MRI) offers detailed information on human delicate tissue, which aids in the diagnosis of a brain tumor. The proposed method in this paper is Brain Tumour Detection and Classification based on Ensembled Feature extraction and classification using CNN.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">issn</subfield> <subfield code="i">isCitedBy</subfield> <subfield code="a">2249-8958</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.35940/ijeat.F2948.0810621</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
Views | 26 |
Downloads | 20 |
Data volume | 15.6 MB |
Unique views | 25 |
Unique downloads | 19 |