Journal article Open Access

Brain Tumor Segmentation and Classification using Multiple Feature Extraction and Convolutional Neural Networks

Tasmiya Tazeen; Mrinal Sarvagya


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:contributor>Blue Eyes Intelligence Engineering  and Sciences Publication (BEIESP)</dc:contributor>
  <dc:creator>Tasmiya Tazeen</dc:creator>
  <dc:creator>Mrinal Sarvagya</dc:creator>
  <dc:date>2021-08-30</dc:date>
  <dc:description>Intracranial tumors are a type of cancer that grows spontaneously inside the skull. Brain tumor is the cause for one in four deaths. Hence early detection of the tumor is important. For this aim, a variety of segmentation techniques are available. The fundamental disadvantage of present approaches is their low segmentation accuracy. With the help of magnetic resonance imaging (MRI), a preventive medical step of early detection and evaluation of brain tumor is done. Magnetic resonance imaging (MRI) offers detailed information on human delicate tissue, which aids in the diagnosis of a brain tumor. The proposed method in this paper is Brain Tumour Detection and Classification based on Ensembled Feature extraction and classification using CNN.</dc:description>
  <dc:identifier>https://zenodo.org/record/5408324</dc:identifier>
  <dc:identifier>10.35940/ijeat.F2948.0810621</dc:identifier>
  <dc:identifier>oai:zenodo.org:5408324</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>issn:2249-8958</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:source>International Journal of Engineering and Advanced Technology (IJEAT) 10(6) 23-27</dc:source>
  <dc:subject>Segmentation, Brain Tumor, Convolutional  Neural Network, Deep Learning.</dc:subject>
  <dc:subject>ISSN</dc:subject>
  <dc:subject>Retrieval Number</dc:subject>
  <dc:title>Brain Tumor Segmentation and Classification using Multiple Feature Extraction and Convolutional Neural Networks</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
26
20
views
downloads
Views 26
Downloads 20
Data volume 15.6 MB
Unique views 25
Unique downloads 19

Share

Cite as