Journal article Open Access

Brain Tumor Segmentation and Classification using Multiple Feature Extraction and Convolutional Neural Networks

Tasmiya Tazeen; Mrinal Sarvagya


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/97c95bb0-da78-40bb-992b-40892f75736c/F29480810621.pdf"
      }, 
      "checksum": "md5:18b9c23a2f11e57d18f4c6980de5991c", 
      "bucket": "97c95bb0-da78-40bb-992b-40892f75736c", 
      "key": "F29480810621.pdf", 
      "type": "pdf", 
      "size": 782085
    }
  ], 
  "owners": [
    251627
  ], 
  "doi": "10.35940/ijeat.F2948.0810621", 
  "stats": {
    "version_unique_downloads": 19.0, 
    "unique_views": 25.0, 
    "views": 26.0, 
    "version_views": 26.0, 
    "unique_downloads": 19.0, 
    "version_unique_views": 25.0, 
    "volume": 15641700.0, 
    "version_downloads": 20.0, 
    "downloads": 20.0, 
    "version_volume": 15641700.0
  }, 
  "links": {
    "doi": "https://doi.org/10.35940/ijeat.F2948.0810621", 
    "latest_html": "https://zenodo.org/record/5408324", 
    "bucket": "https://zenodo.org/api/files/97c95bb0-da78-40bb-992b-40892f75736c", 
    "badge": "https://zenodo.org/badge/doi/10.35940/ijeat.F2948.0810621.svg", 
    "html": "https://zenodo.org/record/5408324", 
    "latest": "https://zenodo.org/api/records/5408324"
  }, 
  "created": "2021-09-03T07:29:23.724098+00:00", 
  "updated": "2021-09-04T01:48:25.830686+00:00", 
  "conceptrecid": "5408323", 
  "revision": 2, 
  "id": 5408324, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.35940/ijeat.F2948.0810621", 
    "description": "<p>Intracranial tumors are a type of cancer that grows spontaneously inside the skull. Brain tumor is the cause for one in four deaths. Hence early detection of the tumor is important. For this aim, a variety of segmentation techniques are available. The fundamental disadvantage of present approaches is their low segmentation accuracy. With the help of magnetic resonance imaging (MRI), a preventive medical step of early detection and evaluation of brain tumor is done. Magnetic resonance imaging (MRI) offers detailed information on human delicate tissue, which aids in the diagnosis of a brain tumor. The proposed method in this paper is Brain Tumour Detection and Classification based on Ensembled Feature extraction and classification using CNN.</p>", 
    "contributors": [
      {
        "affiliation": "Publisher", 
        "type": "Sponsor", 
        "name": "Blue Eyes Intelligence Engineering  and Sciences Publication (BEIESP)"
      }
    ], 
    "title": "Brain Tumor Segmentation and Classification using Multiple Feature Extraction and Convolutional Neural Networks", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "journal": {
      "volume": "10", 
      "issue": "6", 
      "pages": "23-27", 
      "title": "International Journal of Engineering and Advanced Technology (IJEAT)"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "5408323"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5408324"
          }
        }
      ]
    }, 
    "language": "eng", 
    "subjects": [
      {
        "term": "ISSN", 
        "scheme": "issn", 
        "identifier": "2249-8958"
      }, 
      {
        "term": "Retrieval Number", 
        "scheme": "handle", 
        "identifier": "100.1/ijeat.F29480810621"
      }
    ], 
    "keywords": [
      "Segmentation, Brain Tumor, Convolutional  Neural Network, Deep Learning."
    ], 
    "publication_date": "2021-08-30", 
    "creators": [
      {
        "affiliation": "School of Electronics and Communication Engineering, Reva University, Bengaluru-560064, India.", 
        "name": "Tasmiya Tazeen"
      }, 
      {
        "affiliation": "School of Electronics and Communication Engineering, Reva University, Bengaluru-560064, India.", 
        "name": "Mrinal Sarvagya"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }, 
    "related_identifiers": [
      {
        "scheme": "issn", 
        "identifier": "2249-8958", 
        "relation": "isCitedBy", 
        "resource_type": "publication-article"
      }
    ]
  }
}
26
20
views
downloads
Views 26
Downloads 20
Data volume 15.6 MB
Unique views 25
Unique downloads 19

Share

Cite as